Preliminary Information
This document contains information on a product under development. The parametric information
contains target parameters that are subject to change.

CN8980

=
((: CONEXANT"
=

ZipWire2 HDSL2/SDSL Transceiver and Framer

The Conexant ZipWire2 chip set is a DSL transceiver which provides enhanced performance and
better maximum reach at a given data rate than existing symmetric transport systems based on
2B1Q or CAP modulation. ZipWire2 is designed to be fully compliant with the OPTIS-based ANSI
standard for HDSL2 T1 transport and meets all the current requirements of the emerging ETSI
standards for SDSL E1 transport. In particular, flexible control of the transmitted signal power
spectral density results in enhanced spectral compatibility with other services such as ADSL, T1,
E1, HDSL, and ISDN.

The ZipWire2 chip set goes beyond providing modems for T1 or E1 transport by offering
on-chip circuits to facilitate variable data rate operation. These circuits allow the user to trade off
data rate for reach performance. In addition, ZipWire2 devices provide a mode of operation
supporting legacy HDSL1 (2B1Q) transport and framing so that system OEMs can offer Central
Office (CO) equipment capable of operation with 2B1Q-based (e.g., RS8973/8953B) remote
terminals. These CO terminals can be later upgraded to OPTIS-based HDSL2 through software
modifications.

The ZipWire2 device has a two- or three-chip architecture: analog-front-end and line driver in
one chip, and all digital functions in one or two other chips. Major functional blocks in the digital
chip include:

* A bypassable framer/mapper function
¢ A rate-adaptive bit pump DSP with Trellis coding
* A high performance microprocessor core

The framer/mapper features a highly flexible bit-processing engine capable of almost any
frame format. In particular, it supports the ANSI HDSL2 and ETSI HDSL1 frame formats. It
performs EQC, overhead and payload insertion and extraction, data scrambling, bit stuffing, and
sync detection. The framer supports T1/E1 Primary Rate framed or unframed modes,
synchronous or asynchronous payload mapping, and per-time-slot random or fixed data insertion.
In addition, it has programmable external time slot add/drop controls, bit error metering, and
programmable payload mapping which supports 1-, 2-, 4- or 8-bit time slots.

The rate-adaptive DSP is responsible for echo cancellation, line equalization, and data coding.
It is capable of 2-, 4-, 8- and 16-PAM coding and contains an integrated software-controlled clock
recovery and synthesis function. The on-chip 8051-compatible microprocessor core provides
DSP control and sequencing, but can also be used as a general purpose controller for peripheral
components such as codecs or T1/E1 framers and to host network management software. The
functional block diagram illustrates an overview of the ZipWire2 architecture.

Functional Block Diagram

Intel Emulation Bus Master Bus Host Port RAM Bus
Master Host
8051 Core Bus Port
Interface RAM
f ‘ ZipWire2
AFE
and
\8051 Bus Interface MUX / Line Driver

ROM RAM

DSL Framer Serial Data

Framer

}
KAFE Serial Interface }— %

()

DSP

ZipWire2 DSP, Framer, and uP

Distinguishing Features

A highly integrated solution including
framer, controller, DSP, AFE, and line
driver in two or three small packages.
Fully compliant with the OPTIS-based
ANSI standard for HDSL2 T1
transport and ITU G.shdsl transport.

An integrated, bypassable, HDSL2
framer/mapper function. The bypass
function provides direct access to the
DSP interface.

An on-chip, high performance pP
core which provides the internal DSP
bit pump sequencing and control.
This core can also be used as a
general purpose controller for
peripheral components, such as
codecs or T1/E1 framers, and to host
network management software.
Data rates between 144 kbps and
4,640 kbps. The data rate is
software-selectable via an on-board
software programmable clock
synthesizer.

The ability to function as a 2B1Q

transceiver and interoperate with

legacy HDSL 2B1Q terminals.

A device architecture that supports

multichannel line cards through the

following features:

— Single boot ROM loading.

— Fully autonomous startup
sequencing per channel.

— A high-speed PCM interface that
allows a maximum of eight
devices which can share a
common PCM bus.

— Integrated framer for arbitrary
time slot assignments per
channel.

— Point-to-Multipoint support with
signaling channel grooming.

Applications

Copper Pair .
> ——

T1 or E1 transport systems
Variable data rate access systems
Internet connectivity

Voice and/or data pair gain systems
NX64 data transport

Cellular base station data links
Campus modems

Data Sheet

100605C
April 2000

Ordering Information

Model Number Package Ambient Temperature Range
DSNP-L300-001 80-pin TQFP 0°Cto+70°C

27 mm x 27 mm BGA
DSNP-L301-001 80-pin TQFP -40°Cto+85°C

27 mm x 27 mm BGA
DSNP-L301-011 80-pin TQFP -40°Cto+85°C

9x 9 mm CABGA
15 x 15 mm CABGA

Revision History

Revision Level Date Description
A Advanced April 1999 Created
B Advanced April 1999 —
C Advanced April 2000 —

© 1999, 2000, Conexant Systems, Inc.
All Rights Reserved.

Information in this document is provided in connection with Conexant Systems, Inc. (“Conexant”) products. These materials are
provided by Conexant as a service to its customers and may be used for informational purposes only. Conexant assumes no
responsibility for errors or omissions in these materials. Conexant may make changes to specifications and product descriptions at
any time, without notice. Conexant makes no commitment to update the information and shall have no responsibility whatsoever for
conflicts or incompatibilities arising from future changes to its specifications and product descriptions.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as
provided in Conexant’s Terms and Conditions of Sale for such products, Conexant assumes no liability whatsoever.

THESE MATERIALS ARE PROVIDED “AS 1S” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING
TO SALE AND/OR USE OF CONEXANT PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. CONEXANT FURTHER DOES NOT WARRANT THE
ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE
MATERIALS. CONEXANT SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE
OF THESE MATERIALS.

Conexant products are not intended for use in medical, lifesaving or life sustaining applications. Conexant customers using or selling
Conexant products for use in such applications do so at their own risk and agree to fully indemnify Conexant for any damages
resulting from such improper use or sale.

The following are trademarks of Conexant Systems, Inc.: Conexant™, the Conexant C symbol, and “What’s Next in Communications
Technologies”™. Product names or services listed in this publication are for identification purposes only, and may be trademarks of
third parties. Third-party brands and names are the property of their respective owners.

For additional disclaimer information, please consult Conexant’s Legal Information posted at www.conexant.com, which is
incorporated by reference.

Reader Response: Conexant strives to produce quality documentation and welcomes your feedback. Please send comments and
suggestions to tech.pubs @ conexant.com. For technical questions, contact your local Conexant sales office or field applications
engineer.

100605C Conexant
Preliminary Information/Conexant Proprietary and Confidential

http://www.conexant.com
mailto:tech.pubs@conexant.com

Table of Contents

List of Figures xiii
Listof Tables Xvii
1.0 Introduction. 1-1
1.1 RefereNCeS 1-1

2.0 System OVerview. 2-1
2.1 ZipWire2 Transceiver/Framer Functional Summary. 2-2

2.2 ZipWire2 Transceiver/DSP Functional Summary 2-4

2.3 ZipWire2 DSL Framer Functional Summary 2-5

2.4 ZipWire2 AFE Functional Summary. 2-7

2.5 ZipWire2 Transmit Path. 2-8

2.6 ZipWire2 Receive Path 2-9

3.0 Application Interfaces. 3-1
3.1 Using Internal 8051 ProcessorOnly it 3-1

3.2 Using an External Embedded Host Processor 3-3

3.3 Multi-Pair DSL Framer Configuration (Cascade Mode) 3-6

3.4 ZipWire2 Transceiver/Framer to Bt8370 T1/E1 Interface 3-9

3.5 DSL Framer to CN8228 (ATM Phy) Interface 3-10

3.6 DSL Framer Bypass to CN8228 (ATM Phy) Interface 3-11

3.7 Dual Mode CN8228 (ATM Phy) Interface iiiinn.. 3-12

3.8 DSL Framerto MUSYCC Interface 3-13

3.9 DSL Framer Bypass to MUSYCC Interface 3-14

3.10 Dual Mode MUSYCC Interface. e 3-15

3.11 Multiple ZipWire2 Devices to CN8228 or MUSYCC Interface 3-16

3.12 Deliverables 3-18

3.12.1 Customers who do not wish to modify 8051 code............. 3-18

3.12.2 Customers who wish to modify 8051 code to control other devices 3-18

3.12.3 Customers who wish to modify low-level DSL Framercode 3-18

100605C Conexant i

Preliminary Information/Conexant Proprietary and Confidential

Table of Contents CN&980

ZipWire2 HDSL2/SDSL Transceiver and Framer

4.0 Built-In 8051 Core Detailed Description 4-1
4.1 Internal 8051 Data Space Memory Map 4-2
4.2 Internal 8051 Interrupt Mapping 4-3
4.3 ZipWire2 Transceiver Function Registers 4-4
4.4 Configuration Pins 4-4

441 8051 Timer/Counter Description. 4-5
4.5 Internal 8051 Communication Interfaces. 4-6
451 Master Bus Microprocessor Interfacet 4-6
452 HostPort RAM Interface. i 4-6
453 RS232 Serial Interface 4-7
454 Group Talk Interface. . ..ot 4-7
4.6 Program RAM Download. 4-8
4.6.1 SUMMAIY. . .ottt e e e e 4-8
4.6.2 Download DesCriptionot 4-9
4.6.3 Dip Switch #2—DEVADR and BOOTOP Pins i 4-9
4.6.4 Download Protocol OVerview i 4-10
46.5 Download TiMeSot 4-10
4.6.5.1 Host Port RAM Interface, 4-10

4652 GroupTalkInterface 4-10

4.6.6 Download and Device Validation. 4-11
4.6.7 Download Group Master DEViCeot 4-11
4.6.8 Download Group Slave DeviCet 4-11
4.6.9 Download Single Processor Configuration.t iinnn... 4-12
4.6.10 Download Dual Processor Configuration. 4-13
4.6.10.1 Redundant Download Group Master 4-14

4.6.10.2 Device UNQUBNBSS . . . vttt e e e e e 4-14

4.6.10.3 Group UniQUENESS . .. oo v ittt 4-14

4.6.11 Download APICommands it 4-15
4.6.11.1 Boot Code APICommandsot 4-15

4.6.11.2 Operational API Commands.t 4-15

4.6.11.3 Program RAM Checksum i 4-15

4.6.12 Download EXamples. . ..ottt 4-16

5.0 ZipWire2 DSP Detailed Description 5-1
5.1 ZIipWire2 CIoCKS 5-1

iv Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CNg980

Table of Contents

ZipWire2 HDSL2/SDSL Transceiver and Framer

6.0 ZipWire2 Framer Detailed Description 6-1
6.1 Distinguishing Features 6-1
6.2 CommonFunctions. 6-2

B.2.1 DATAFIFO . .. 6-2

6.3 HDSL Section 6-2
6.3.1 General HDSL FUNCHIONS. o 6-2
6.3.1.1 CRC Generator 6-2

6.3.1.2 Scrambler/ Descrambler 6-3

6.3.1.3 Auxiliary Channel 6-3

6.3.1.4 RX DSL Reference Phase Measurement. 6-3

6.3.2 HDSL Receiver Functionality.t 6-4
6.3.2.1 DSL Sync Detector (DSD)ot 6-5

6.3.2.2 Tip/Ring Reversal Detection. 6-5

6.3.23 RXHDSLPayload Table............ 6-5

6.3.3 HDSL Transmitter Functionality.o 6-6
6.3.3.1 Stuffing Generator. 6-6

6.4 PCM Section.......... 6-7
6.41 PCOMINterface 6-7

6.4.2 General PCM FUNCLIONS 6-7
6.4.2.1 CRC Generator 6-7

6.4.2.2 INSEM/DIOD. . .t t 6-7

6.42.3 OverheadHandling i 6-8

6.4.2.4 E1Groomingiri i e 6-8

6.4.25 MFPhase Measurement 6-8

B.4.3 POM RBCEBIVEI .. o 6-8

6.4.4 PCM Transmitter 6-10
6.4.4.1 PCM Sync Detector. . ..o .o 6-10

6.5 Testand Diagnostics. 6-11
6.5.1 Performance Monitoring. i 6-11

6.5.2 PRBSand BERMeter. o 6-11

7.0 Hardware Interfaces 7-1
7.1 ZipWire2 Transceiver/Framer to AFE Interface 7-1
7.2 Transmission Line Interface 7-2

7.21 Continuous Time Filter and Line Driver Control 7-3

7.2.2 Compromise Hybrid, Matching Resistors, and Transformer 7-4
7.2.21 Compromise Hybrid 7-5

7.2.2.2 Impedance Matching Resistors i 7-5

7223 Transformer 7-5

7224 Anti-Alias Filterso 7-5

7.2.3 SUrge ProteCtiont 7-5

7.3 Voltage Reference and Compensation Circuitry 7-6
7.4 Framer Bypass Interface (ZipWire2 Transceiver DSL Interface). 7-7
7.5 Test and Diagnostic Interface (JTAG). 7-8
100605C Conexant v

Preliminary Information/Conexant Proprietary and Confidential

Table of Contents CN&980

ZipWire2 HDSL2/SDSL Transceiver and Framer

8.0 PinDescriplions. 8-1
8.1 ZipWire2 Pin AsSignments it 8-1

8.1.1 ZipWire2 Transceiver/Framer Pin Assignments, 8-2

8.1.2 ZipWire2 Transceiver Pin ASSignmentsttt 8-3

8.1.3 ZipWire2 Framer Pin ASSignmentst 8-4

8.1.4 ZipWire2 AFE Pin ASSigNments. i 8-5

8.2 ZipWire2 Signal Descriptions 8-6

8.21 ZipWire2 Transceiver/Framer Signal Descriptions 8-6

8.2.2 ZipWire2 AFE Signal Descriptions. 8-15

9.0 EVM SPpecific....... 9-1
9.1 BE8370ET/T1 Framer e e 9-2

9.2 EVMLEDs and Miscellaneous Output 9-2

9.3 EVMDIP SWitches. e 9-3

10.0 Software OVerview 10-1
10.1 Software Features. 10-2

11.0 Embedded 8051 Software Features 11-1
11.1 Activating the ZipWire2 Modem 11-1

11.1.1 Activation State Manager (ASM) 11-1

11.1.2 Pre-Activation 11-2

11.1.2.1 OPTIS (HDSL2 1T1) Pre-Activation oo, 11-2

11122 AutoBaud 11-2

111,28 GRS . 11-2

1113 DSP Training . ..o 11-3

1114 DSLLINE COdiNG ... oottt e e 11-3

1115 Frame Format. 11-3

11.2 Loophacks. 11-4

11.3 BERMeters. 11-6

11.3.1 DSL Framer TX PCM BER Meter o i 11-6

11.3.2 DSLFramer RXxPCMBERMeter. i 11-6

11.3.3 Bit-Pump-Only BER Meter o e 11-6

11.4 Performance Monitoring (Error History), 11-7

11.5 DSL Framer Interrupt Handler. 11-9

11,51 SyYNC StatUS . ..ot 11-9

11.5.2 Error Status Reportingo 11-9

1153 TRxFIFOErrorHandling o o 11-9

1154 DPLLErrorHandlingco i e e 11-10

11.5.5 Pair ID Termination (E1 Mode)t 11-11

11.5.6 Indicator Bit Termination 11-11

11.6 Dynmamic Master Loop. 11-12

11.7 Tip/Ring Reversal 11-12

vi Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CNg980

Table of Contents

ZipWire2 HDSL2/SDSL Transceiver and Framer

11.8 Loop Reversal. 11-12
11.9 Embedded Operation Channel (EOC) Operation. 11-13
1191 Feature OVervieWo 11-13

11.9.2 Does Not Support 11-13

11.9.3 EOC General OVEIVIEWot e e e e 11-13
1194 EOCFrame Format. 11-14

11.95 EOC Unit AddresSsesS . . . o oot e e e 11-15
11.9.6 EOC MesSage IDS.ottt e e e e 11-16

11.10 EOC Implementation Details 11-18
11.10.1 EOC Transmit.o 11-18
11.10.2 EOC RBCRIVE . .ottt et e e e e e 11-20
11.10.3 EOC Transaction Time i e 11-22
11.10.4 EOC Transaction Time-0ut e 11-22
11.10.5 EOC Message CONtrol.ottt e e e e 11-22
11.10.5.1 Auto-Response To Request Message., 11-22

11.10.5.2 Auto-Trigger a Request Message 11-22

11.10.5.3 Notify Host That a Message Was Received. 11-23

11.10.5.4 Notify Host When Error Is Detected v ... 11-23

11.10.6 EOC Transmit QUBUE.o\ttt e e e e e e e 11-23
11.10.7 EOC Receive QUEUEot e e e e 11-24
11.10.8 EOC Proprietary MESSagESt oottt et e e e et 11-24
11.10.8.1 User-Defined Message Request—Message ID112. 11-24

11.10.8.2 User-Defined Message Response— Message ID240 11-25

11.10.8.3 API Over EOC Request—Message ID 113 io... 11-25

11.10.8.4 API Over EOC Response—Message ID241 11-26

11.10.8.5 Redefining Proprietary Messagesc.oouiriiinnnnn... 11-26

11.10.9 EOC Application State Machine. i 11-26
11.10.10EQOC APl Commands.ttt e e e 11-28

11.11 T1/E1 Framerand LIU Support 11-28
12.0 Embedded 8051 Code........... 12-1
12.1 BootCode State 12-3
12.2 DSL Initialization State 12-3
12.3 Out-Of-Service Check 12-3
12.4 Configure ZipWire2 State 12-3
12.5 Handle TestMode States. 12-4
12.6 DSLResetCheck............. 12-4
12.7 APLIANAQEYot 12-4
12.8 Bit Pump Manager 12-7
12.9 DSL Framer Managert 12-7
12.10 DSL Loop Manager 12-7
12.11 HDSL2 Activation State Manager i 12-8
100605C Conexant vii

Preliminary Information/Conexant Proprietary and Confidential

Table of Contents CN&980

ZipWire2 HDSL2/SDSL Transceiver and Framer

12.12 HDSL1 Activation State Manager 12-10
12,121 HTU-C Activationt e e e 12-10
12.12.2 HTU-R ACHiVationo e e 12-12

13.0 HDSL2 Standards Compliance 13-1

13.1 Bit-Level Mapping. 13-1
13.1.1 Four-Level 2B1Q Mapping (HDSL1) 13-1
13.1.2 Sixteen-Level Optis Mapping (HDSL2) 13-2

14.0 DSL Frame Structure. 14-1

14.1 Bypass DSL Frame Structure. 14-1

14.2 HDSL2 Configurations. 14-1
14,20 HDSL2 _1T1 Lo 14-3
14.2.2 HDSL2 11 .. 14-3
14.2.3 HDSL2—Single Pair.t 14-4

14.3 HDSL1 Configurations. 14-5
14,31 HDSLT 2T L 14-7
14.3.2 HDSLA 2E1 . .. 14-8
14.3.3 HDSLA 3BT . .. 14-9
14.3.4 HDSLA ATd . o 14-10
14,35 HDSLA BT . o 14-10
14.3.6 HDSL1_DSL_CUSTOM. e 14-10

15.0 API: Microprocessor Communicator Channel Protocol 15-1

15.1 APIMessage Time-0ut e 15-3

15.2 API Master and Slave Implementation 15-3
15.2.1 No Peer-to-Peer Protocol 15-3

15.3 APIMessage Structure 15-4
15.3.1 Incoming Message Structure it 15-4
15.3.2 Outgoing Message Structuret 15-4
15.3.3 Header Section-Destination Field 15-5

15.3.3.1 Header Section—Opcode Field i, 15-5
15.3.4 Header Section—Reserved Byte or ACK Status ot 15-6
15.3.4.1 Acknowledge StatusByte 15-6
15.3.5 Header Section-Message Length Field 15-8
15.3.6 Data Section—Data Parameter Field, 15-8

15.4 Host Port RAM Interface Protocol 15-9
15.4.1 INTR_HOST and INTR_8051 Registerso 15-10
15.4.2 Host Port Acknowledge Register.t 15-11
15.4.3 Host Port Status Registers 15-11

15.5 Host Port RAM Interface Sequence of Events. 15-13

15.5.0.1 Host Processor Polling Method 15-14
15.5.1 Multi Device System. 15-14
viii Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CNg980

Table of Contents

ZipWire2 HDSL2/SDSL Transceiver and Framer

15.6 RS232 Serial Interface Protocol 15-15
15.6.1 Host Processor to 8051 Processor Message Structure 15-15

15.6.2 RS232 Acknowledge Message Structure. i 15-16

15.6.3 ZipWire2 8051 Processor to Host Processor Status Message Structure 15-16

15.6.4 RS232 Message Transfer Protocol i, 15-17

15.7 RS232 Checksum Function 15-19
15.7.1 RS232 Multi-Device Systemot 15-19

15.7.2 Group Talk Serial Interface Protocol, 15-19

15.7.3 Boot RAM Software Download 15-19

16.0 ZipWire2 API Configuration. 16-1
16.1 APICommand SEqUENCING\ttt 16-1
16.2 |Indirect Configuration 16-3
16.2.1 Scrambler/Descrambler TapsS oottt 16-3

16.2.2 CRO TaD. ..ottt e 16-3
16.2.3 SYNCWOrd. . ..ot 16-4
16.2.4 Pair ID (Z-BitS). . . oo o 16-4

16.3 Single Pair Configuration 16-5
17.0 ZipWire2 APl Commands. 17-1
17.1 APl Commands: Quick Reference 17-2
17.2 API Command Set Documentation Convention 17-6
17.2.1 APICommand Namesttt e 17-6

17.3 Level TAPICommands. 17-7
17.3.1 DSLSystemEnable 17-7
17.3.2 DSL System Configuration 17-9
17.3.3 DSL Activation. 17-11
17.3.4 BitPump Training Mode. 17-14
17.3.5 DSL Pre-Activation Mode i 17-15
17.3.6 DSLStartup Mode 17-16
17.3.6.1 Bit Pump Auto Tip/Ring Reversal. 17-16

17.3.7 LOST Time (Tsilent) Period. o i e 17-17
17.83.8 DSL RESEL . ..o 17-18
17.3.9 DSL Framer—PCM Configuration. i i 17-19
17.3.10 PCM Multi-Frame Lengtho e 17-20
17.3.11 Single Pair Configuration 17-20
17.312 DSLDataRate 17-21
17.3.13 DSL Status—Dynamico 17-22
17.3.14 DSL Status—Static 17-25
17.3.15 VBISIONS ... 17-26
17.3.16 Line Attenuation. 17-29
17.3.17 NOISE Margino 17-30
17.3.18 EOC Send Command i 17-31
17.3.19 EOC Get Message Statlsottt e e e e 17-31
100605C Conexant iX

Preliminary Information/Conexant Proprietary and Confidential

Table of Contents

CN8980

17.4

ZipWire2 HDSL2/SDSL Transceiver and Framer

17.3.20 EOC Set Database Data. i 17-32
17.3.21 EOC Get Database Data. i 17-32
17.3.22 EOC Set Message Gontrol. i e 17-33
17.3.23 EOC Read Receive QUELEot e e e e 17-34
17.3.24 EOC Set Proprietary Length 17-35
17.3.25 Download Start (Length) 17-35
17.3.26 Download Data. 17-36
17.3.27 Download End (Checksum). 17-36
17.3.28 Download Slave 17-37
Level 2APICommands 17-38
17.4.1 Read DSL Control Commandsoiuiinii i 17-38
17.4.2 Stage NUMDEr ... o 17-39
17.4.3 Read Configuration Pins. 17-40
1744 AFE Setting o 17-41
17.4.5 Analog Front End (AFE) Configuration. i, 17-42
17.4.6 DSLForce Deactivate 17-43
17.4.7 TransmitExternal Data 17-43
1748 TeSTMOUES . .. oo 17-44
17.4.9 Bit Pump Transmit Isolated Pulses TestMode 17-45
17.4.10 Bit Pump Transmit Fixed Pattern TestMode. i, 17-46
17411 Loopbacks. o 17-47
17.4.12 BitPumpBERMeterState 17-49
17.4.13 Bit Pump BER Meter Resultst e 17-50
17414 ERLETeSt Mode.o 17-52
17415 ERLE ReSURS oo 17-53
17.4.16 Auxiliary CLK Select. o 17-54
17.4.17 PCM Clock Configuration e 17-54
17.4.18 DSL Framer Transmit PCM BER Meter Results 17-55
17.4.19 DSL Framer Receive PCM BER Meter Results 17-57
17.420 Transmit PCMBER State 17-58
17.4.21 Receive PCMBER State 17-58
17.4.22 PRBS CONfigure. . ..ottt 17-59
17.4.23 Fill Pattern (CONST_FILL). . ..ottt e e 17-60
17.4.24 DataBank Contents 17-61
17.4.25 Transmit PCM Mapper Value.ttt e e 17-62
17.4.26 Transmit PCM Mapper Write. s 17-63
17.4.27 Receive PCM MapperValue e 17-63
17.4.28 Receive PCM Mapper Writet e e e 17-64
17.4.29 Transmit HDSL MapperValue. e 17-65
17.4.30 Transmit HDSL Mapper Writeot s 17-66
17.4.31 Receive HDSL Mapper Value.t e e 17-66

17.4.31.1 Numberof Time Slots. 17-67
17.4.32 Receive HDSL Mapper Write.ottt e 17-67
17.4.33 Clear ZipWire2 Error CoUNtersoo ittt e e e 17-68
17.4.34 Read ZipWire2 Operational Error Counters, 17-69
17.4.35 Read ZipWire2 HDSL Performance Error Counters, 17-70

Conexant 100605C
Preliminary Information/Conexant Proprietary and Confidential

CNg980

Table of Contents

ZipWire2 HDSL2/SDSL Transceiver and Framer

17.4.36 Read ZipWire2 PCM Performance Error Counters i, .. 17-71
17.4.37 Read ZipWire2 System Performance Error Counters 17-72
17.4.38 Available Seconds and Total Seconds i 17-73
17.4.39 Inject DSL CRC Errort e e e e 17-74
17.4.40 Set CRC/FEBE Error History State, 17-75
17.4.41 Query CRC/FEBE History Interval In-Progressc .. 17-76
17.4.42 CRC ErrorHistoryatInterval 1.. it 17-77
17.4.43 CRC Error HistoryatInterval 2 it 17-78
17.4.44 CRC Error History atInterval 3., 17-79
17.4.45 FEBE Error History at Interval 1. 17-80
17.4.46 FEBE Error History at Interval 2. e 17-81
17.4.47 FEBE Error History at Interval 3. 17-82

17.5 Level SAPICommands. 17-83
17.5.1 Signal Level Metero 17-83
17.5.2 Timing Recovery Offset 17-84
17.5.3 BitPump Reverse Tip/RING.o 17-85
17.5.4 Scrambler/Descrambler Configuration. 17-85

1755 Write AFETransmit Gain. 17-87
175.6 Read AFE Transmit Gain. 17-88
17.5.7 DSL Framer Transmit Path Reset 17-89
17.5.8 DSL Framer Receive Path Reset 17-90
17.5.9 DSL Framer—HDSL Configuration 17-91
17.5.10 Mask Host Port Interrupt (INTR_HOST) 17-92
17.5.11 DSL Framer Auto Water Level. 17-93
17.5.12 DSL Framer Transmit Water Level. 17-93
17.5.13 DSL Framer Receive Water Level 17-94
17.5.14 DSL Framer DPLL Clock Generator. 17-95

17.6 Read/Write Register Commands. i, 17-97
17.6.1 Write RegiSter . .ot 17-97
17.6.2 Read Register 17-98
17.6.3 Write AFE Register. 17-98
17.6.4 Read AFE ReQiSterot 17-99

17.7 T1/E1FramerCommands i, 17-100
17.7.1 T1/E1 Framer Configureot 17-100
17.7.2 T1/E1FramerFrame Format. 17-100
17.7.3 T1/E1 Framer Transmit AlS.o 17-101
17.7.4 T1/E1 Framer OutputMode. o 17-101
17.7.5 T1/E1 Framer Receive Termination, 17-102
17.7.6 T1/E1 Framer Loophacks i 17-103
17.7.7 T1/E1 Read Framer Control Commands. i ... 17-104
17.7.8 T1/E1 Framer VersionSo e e 17-105

17.8 EVM Specific Commands 17-106
17.8.1 EVMSet LED Bank.o i 17-106
17.8.2 EVM Set Miscellaneous Output. 17-107
17.8.3 EVMLED Update State. e 17-107
17.84 EVMLED and DIP Switch Status. 17-108
100605C Conexant Xi

Preliminary Information/Conexant Proprietary and Confidential

Table of Contents CN&980

ZipWire2 HDSL2/SDSL Transceiver and Framer

18.0 Electrical and Mechanical Specifications 18-1
18.1 Specifications for the ZipWire2 Transceiver/Framer and ZipWire2 AFE. 18-1

18.1.1 Recommended Operating Conditions 18-1

18.1.2 Absolute Maximum Ratings 18-2

18.2 Thermal Characteristics 18-3

18.2.1 ZIpWIre2 AFE . . .o 18-3

18.2.2 ZIipWIire2 TranSCeIVET vttt ot et e e et e e e e e 18-3

18.2.3 ZIPWIire2 Framert 18-3

18.2.4 ZipWire2 TransCeiver/Framer e e 18-3

18.3 Specifications for ZipWire2 Transceiver/FramerOnly 18-4

18.3.1 Power DisSipationt 18-4

18.3.2 DC Characteristics 18-4

18.3.3 Host Port RAM Interface Timing 18-5

18.3.4 Master Bus Interface Timing.ottt e 18-7

18.3.5 DSL Framer Timing Requirements it 18-7

18.3.6 DSL Framer Switching Characteristics. i 18-8

18.4 Specifications for ZipWire2 AFEONly 18-9

18.4.1 Power DisSipationt 18-9

18.4.2 DC Characteristics 18-9

18.4.3 PSD Specifications.ot 18-10

18.4.3.0 18-10

18.4.3.2 18-11

18.4.3.8 18-11

18.4.4 Pulse Template Specifications. 18-12

18.5 Mechanical Specifications 18-14
Appendix A: Acronyms and Abbreviations. A-1
Xii Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CNg980

List of Figures

ZipWire2 HDSL2/SDSL Transceiver and Framer

List of Figures

Figure 2-1. High-Level Functional Diagram e 2-1
Figure 2-2. ZipWire2 Transceiver/Framer Detailed Block Diagram............................. 2-3
Figure 2-3. ZipWire2 Transceiver/DSP Detailed Block Diagram...............t 2-4
Figure 2-4. DSL Framer Detailed Block Diagram oo 2-6
Figure 2-5. ZipWire2 AFE Block Diagram. 2-7
Figure 2-6. Detailed Transmit Data Path Block Diagram iiiiiian. 2-8
Figure 2-7. Detailed Receive Data Path Block Diagram i, 2-9
Figure 3-1. Single Pair Hardware Configuration 3-1
Figure 3-2. Multi-Pair Hardware Configuration 3-2
Figure 3-3. Group Master/Group Slave Multi-Pair Hardware Configuration...................... 3-3
Figure 3-4. Master Multi-Pair Hardware Configuration oo ... 3-4
Figure 3-5. Redundant Group Master Multi-Pair Hardware Gonfiguration....................... 3-5
Figure 3-6. Multi-Pair Configuration—PCM Busedttt 3-7
Figure 3-7. Multi-Pair Configuration—PCM Cascadeo, 3-8
Figure 3-8. ZipWire2 Transceiver/Framer to Bt8370 T1/E1 Interface. 3-9
Figure 3-9. DSL Framer to CN8228 (ATM Phy) Interface Diagram 3-10
Figure 3-10. DSL Framer Bypass to CN8228 (ATM Phy) Interface Diagram 3-11
Figure 3-11. Dual Mode CN8228 (ATM Phy) Interface Diagram 3-12
Figure 3-12. DSL Framer to MUSYCC Interface Diagramo iiiiiiiiiinnnnn 3-13
Figure 3-13. DSL Framer Bypass to MUSYCC Interface Diagram 3-14
Figure 3-14. Dual Mode MUSYCC Interface Diagram 3-15
Figure 3-15. Multiple ZipWire2 Devices to CN8228 or MUSYCC Interface Diagram 3-16
Figure 3-16. Multiple ZipWire2 Devices to CN8228 or MUSYCC Interface Diagram 3-17
Figure 4-1. ZipWire2 PRAM Download OVEIVIEW 4-9
Figure 4-2. Single Processor Configuration. 4-12
Figure 4-3. Host Processor Configuration. 4-13
Figure 5-1. ZIDWIre2 ClOCKS . . .ot e 5-1
Figure 5-2. Crystal Interface oo 5-2
Figure 6-1. Generic CRC Generatoro 6-2
Figure 6-2. Generic Scrambler GENerator 6-3
Figure 6-3. HDSL Auxiliary Channel Timing. e 6-3
Figure 6-4. HDSL Receive Section Block Diagram. i 6-4
Figure 6-5. DSD Synchronization State Machine. 6-5
Figure 6-6. HDSL TX Section Block Diagram. e 6-6
Figure 6-7. Insert/Drop Timing Diagram 6-7
Figure 6-8. PCM Receiver Block Diagram i 6-9
Figure 6-9. PCM Transmitter Block Diagram 6-10
Figure 6-10. Generic PRBS Generator.o i 6-11
Figure 6-11. PRBSand BER Meter Timing i 6-12
100605C Conexant Xiii

Preliminary Information/Conexant Proprietary and Confidential

List of Figures

CN8980

ZipWire2 HDSL2/SDSL Transceiver and Framer

Figure 7-1. ZipWire2 Transceiver/Framer to AFE Interface., 7-1
Figure 7-2. DSL Transmission Line Interface. i e 7-2
Figure 7-3. Continuous Time Filter and Line Driver Control. o .. 7-3
Figure 7-4. Hybrid TOpologyot 7-4
Figure 7-5. ZipWire2 AFE Bias Current Network 7-6
Figure 7-6. ZipWire2 Transceiver DSL Interface i 7-7
Figure 8-1. ZipWire2 Transceiver/Framer Pin Assignments. iiiiiin... 8-2
Figure 8-2. ZipWire2 Transceiver Pin ASSignments. i 8-3
Figure 8-3. ZipWire2 Framer Pin ASSIgNMEeNtsSt 8-4
Figure 8-4. ZipWire2 AFE Pin Diagram i 8-5
Figure 9-1. EVM BIock Diagram. e 9-1
Figure 10-1. Software OVerVIEWo e e 10-1
Figure 11-1. Activation State Manager (ASM) Overview oo, 11-2
Figure 11-2. ZipWire2 Loophacks oo 11-4
Figure 11-3. Detailed AFE Loopbackso i 11-5
Figure 11-4. CRC and FEBE Error Records at Three Time Intervals. 11-7
Figure 11-5. DPLL State Diagramo i e 11-10
Figure 11-6. Loop Reversal Definition. e 11-12
Figure 11-7. EOC Implementation Details—Transmit o ... 11-19
Figure 11-8. EOC Implementation Details—Receive 11-21
Figure 11-9. EOG Application State Machine i 11-27
Figure 12-1. Main Program Flow. o 12-2
Figure 12-2. APIManager Flow o 12-6
Figure 12-3. HDSL2 HTU-C Activation State Diagram oo, 12-8
Figure 12-4. HDSL2 HTU-R Activation State Diagram 12-9
Figure 12-5. HDSL1 Activation State Machineat HTU-C 12-11
Figure 12-6. HDSL1 Activation State Machineat HTU-R........... 12-12
Figure 14-1. HDSL2 Frame Structure i e 14-3
Figure 14-2. Payload Block Structure for 1T1 Application. 14-3
Figure 14-3. Payload Block Structure for 1E1 Application. 14-4
Figure 14-4. HDSL1 Frame Structure e 14-6
Figure 14-5. Payload Block Structure for 2T1 Application. 14-7
Figure 14-6. Payload Block Structure for 2E1 Application. 14-8
Figure 14-7. Payload Block Structure for 3E1 Application. 14-9
Figure 14-8. Payload Block Structure for 1T1 Application. 14-10
Figure 14-9. Payload Block Structure for 1E1 Application. 14-10
Figure 15-1. Communication Channel Protocols. 15-2
Figure 16-1. API Command SeqQUENCINGottt e e e 16-2
Figure 18-1. Host Port Interface Timing Diagrams it 18-5
Figure 18-2. Transmit Pulse Template for Two- and Three-Pair Systems; Normalized Pulse Mask
(Source ETSITS 101 135, Formerly ETR152) e 18-10
Figure 18-3. Transmit Pulse Template for One-Pair Systems (Source ETSI TS 101 135,
Formerly ETR 152) o 18-11
Figure 18-4. Upper Bound of the Average PSD of a 392 kbaud System (Source ETSI TS 101 135,
Formerly ETR 152) ... o 18-12
Figure 18-5. Upper Bound of the Average PSD of a 584 kbaud System (Source ETSI TS 101 135,
Formerly ETR 152) o 18-12
Xiv Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CNg980

List of Figures

ZipWire2 HDSL2/SDSL Transceiver and Framer

Figure 18-6. Upper Bound of the Average PSD of a 1,160 kbaud System (Source ETSI TS 101 135,
Formerly ETR 152) . ..o o 18-13
Figure 18-7. Package Outline, 27 x 27 mm, Two-Layer Chip, 314-Pin Ball Grid Array (BGA) 18-14
Figure 18-8. Package Outline, 15 x 15 mm, Two-Layer Chip, 208-Pin CABGA 18-15
Figure 18-9. Package Outline, 9 x 9 mm Two-Layer Chip, 81-Pin CABGA 18-16
Figure 18-10. Package Outline for the 80-Pin Thin Quad Flat Pack (TQFP) 18-17
100605C Conexant XV

Preliminary Information/Conexant Proprietary and Confidential

List of Figures CN8980
ZipWire2 HDSL2/SDSL Transceiver and Framer

Xvi Conexant 100605C
Preliminary Information/Conexant Proprietary and Confidential

CN8&980 List of Tables

ZipWire2 HDSL2/SDSL Transceiver and Framer

List of Tables
Table 4-1. Internal 8051 Memory Map.t 4-2
Table 4-2. Internal 8051 Interrupt Mappingot 4-3
Table 4-3. START Bit Definitions 4-4
Table 4-4. Internal 8051 Timers/Counterso e 4-5
Table 4-5. 8051 Communication Interfaces. 4-6
Table 4-6. Dip Switch #2 Definition 4-9
Table 4-7. DEVADR Bit Definitions. 4-9
Table 4-8. BOOTOP Bit Definitions. 4-10
Table 4-9. Boot Code API Commands i 4-15
Table 4-10. Operational API Commands i e 4-15
Table 5-1. ZIPWIre2 CloCKS . ..o 5-2
Table 7-1. ZipWire2 AFE Compensation Capacitor Valueso, 7-6
Table 7-2. ZipWire2 AFE Bias Current Network Values. 7-6
Table 8-1. ZipWire2 Transceiver/Framer Signal Definitions 8-6
Table 8-2. ZipWire2 AFE Signal Descriptions. 8-15
Table 9-1. Generic Chip Select CS7 Memory Map 9-1
Table 9-2. DSL Status LED #1 Register—Write Only. 9-2
Table 9-3. T1/E1 Framer Output / LED #2 Register—Write Only, 9-2
Table 9-4. DIP Switch 3 Bit Definitions 9-3
Table 9-5. DIP Switch 4 Bit Definitions 9-3
Table 11-1. Activation Phases 11-1
Table 11-2. EOC MeSSa0E TYPBS . . oottt e e e e e e e e e e e e 11-14
Table 11-3. Frame Format for HDSL2 EOC. 11-14
Table 11-4. EOC Device AdAresso e e e 11-15
Table 11-5. Summary of EOC Request Message IDS 11-16
Table 11-6. EOC TxQueue Status Bits 11-24
Table 11-7. User-Defined Message Request Information Field. 11-24
Table 11-8. User-Defined Message Response Information Field 11-25
Table 11-9. API Over EOC Request Information Field. 11-25
Table 11-10. API Over EOC Response Information Field 11-26
Table 11-11. EOC APl Commands SUMMAry.ttt e 11-28
Table 12-1. APl Manager Flag Description. e 12-5
Table 13-1. 2B1Q PAM4 Bit-to-Level Mapping.t 13-1
Table 13-2. Optis PAM16 Bit-to-Level Mapping. e 13-2
Table 14-1. HDSL2 Frame Structure and Overhead Bit Allocation 14-2
Table 14-2. ATT Framing oot e e 14-3
Table 14-3. AET Framingot e 14-4
Table 14-4. HDSL1 Frame Structure and Overhead Bit Allocation 14-5
Table 14-5. 2T Framingot e e 14-7

100605C Conexant XVii

Preliminary Information/Conexant Proprietary and Confidential

List of Tables CN8&980
ZipWire2 HDSL2/SDSL Transceiver and Framer

Table 14-6. 2E1 Framingot e e 14-8
Table 14-7. SET Framingot e e 14-9
Table 14-8. AT1 Framingot e e 14-10
Table 14-9. AET Framingot e 14-10
Table 15-1. Incoming Messages from the Host Processor 15-4
Table 15-2. Outgoing Messages from the 8051 Processor, 15-4
Table 15-3. Destination Field Specification 15-5
Table 15-4. API OpPCOAe TYPE. . oot e e 15-5
Table 15-5. Acknowledge Status COdeS.o 15-6
Table 15-6. Host Port RAM Mappingt e 15-9
Table 15-7. Acknowledge Status Register (Interrupt Source Register) 15-11
Table 15-8. Host Port RAM Status Mapping ...t e 15-12
Table 15-9. Host Port RAM Message Protocol Events. 15-13
Table 15-10. Host Processor to 8051 Processor RS232 Message Structure. 15-15
Table 15-11. RS232 Acknowledge Response Message Structure 15-16
Table 15-12. 8051 Processor to Host Processor RS232 Message Structure. 15-16
Table 15-13. Example 1—Incoming RS232 MeSSageot 15-17
Table 15-14. Example 1—O0utgoing RS232 MeSSage 15-17
Table 15-15. Example 2—Incoming RS232 MeSSageo 15-17
Table 15-16. Example 2—0utgoing RS232 MeSSageot 15-17
Table 15-17. Example 3—Incoming RS232 MeSSaget 15-18
Table 15-18. Example 3—0utgoing RS232 MeSSageo 15-18
Table 16-1. Scrambler/Descrambler Tapst 16-3
Table 16-2. CRO TAD ..ottt e e e e 16-3
Table 16-3. Sync Word—HDSL2 16-4
Table 16-4. Sync Word—HDSLT 16-4
Table 16-5. PairID ofthe Z-bitField 16-4
Table 16-6. Single Pair Configuration APl Commands. 16-5
Table 17-1. APl Command SUMMAary. et 17-2
Table 17-2. HDSL1 Variable Rate Startup Times 17-12
Table 17-3. STATUS_1: DSL Status Bit Definitions 17-23
Table 17-4. STATUS_3: Startup Failure Status Bit Definitions 17-23
Table 17-5. STATUS_4: DSL Framer Status Bit Definitions 17-24
Table 17-6. STATUS_8: Acknowledge Status (ISR) Bit Definitions. 17-24
Table 17-7. Fatal Error Bit Definitions 17-25
Table 17-8. Tx State Bit Definitions 17-25
Table 17-9. DEVADR /BOOPOP Bit Definitions i 17-40
Table 17-10. AFE Bit Definitions. 17-41
Table 17-11. Test Mode Options o e 17-44
Table 17-12. Loopback Optionso 17-47
Table 17-13. DSL Framer BER Status Bits. i 17-56
Table 17-14. PRBS Data Pattern 17-60
Table 17-15. Clear Error Counter Options e 17-68
Table 17-16. Inject CRC Error Options.o it e e 17-74
Table 17-17. T1/E1 Framer Loopback Options. 17-103
Table 17-18. Framer Silicon TYPeS.ot e e e e 17-105
Xviii Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CN8&980 List of Tables
ZipWire2 HDSL2/SDSL Transceiver and Framer
Table 18-1. Recommended Operating Conditions i 18-1
Table 18-2. Absolute Maximum Ratings 18-2
Table 18-3. ZipWire2 Transceiver/Framer Power Dissipation. oo, 18-4
Table 18-4. Transceiver/Framer DC Characteristics i 18-4
Table 18-5. Host Port Ram Interface Timing Table. 18-6
Table 18-6. ZipWire2 AFE Power Dissipation.t e 18-9
Table 18-7. AFE DC CharaCteristicst e e e e 18-9
Table 18-8. Transmit Pulse Template for Two- and Three-Pair Systems (Source ETSI TS 101 135,
Formerly ETR 152) ... oo 18-10
Table 18-9. Transmit Pulse Template for One-Pair Systems (Source ETSI TS 101 135,
Formerly ETR 152) o e 18-11
100605C Conexant XiX

Preliminary Information/Conexant Proprietary and Confidential

List of Tables

CN8980

ZipWire2 HDSL2/SDSL Transceiver and Framer

XX

Conexant 100605C
Preliminary Information/Conexant Proprietary and Confidential

1.0 Introduction

This data sheet provides information for using the Conexant CN8980 ZipWire2
HDSL2/SDSL Transceiver and Framer, and ZipWire2 Analog Front-End (AFE)
devices. This document discusses application and hardware interfaces. It provides
detailed descriptions of the devices and pins, software information, configuration
information, implementation of communication protocols, commands, and
electrical and mechanical specifications.

Due to the flexibility of the ZipWire2 chip set, not all applications are
addressed in this data sheet. Please contact the local sales office or technical
support to determine how the ZipWire2 device can be used in your DSL
application.

1.1 References

T1/E1.4 (T1E1.4/99-006)—Draft for HDSL2 Standard
RE/TM-0601 1-1—Draft for SDSL

100605C

Conexant 1-1

Preliminary Information/Conexant Proprietary and Confidential

1.0 Introduction CN8980
1.1 References ZipWire2 HDSL2/SDSL Transceiver and Framer

1-2 Conexant 100605C
Preliminary Information/Conexant Proprietary and Confidential

2.0 System Overview

For most applications, the ZipWire2 chip set can be viewed as a pair of wires:
What comes in on one terminal unit will go out the far-end terminal unit.

Figure 2-1 illustrates the ZipWire2 data interfaces. The Framer Bypass and HDSL
auxiliary interfaces operate at the DSL line rate. The PCM and Insert/Drop
operate at the PCM clock rate. The DSL line interfaces to the physical twisted
pairs.

Figure 2-1. High-Level Functional Diagram

Framer Bypass <—>\ / -

DSL Clock Domain

Framer Bypass

DSL Clock Domain

HDSL Aux ~—— o DSL Line ™ HDSL Aux
——————————————————————— S |%----P £ |-
PCM Stream -a——» —® PCM Stream
PCM Clock Domain PCM Clock Domain

Insert/Drop <—>/ \<—> Insert/Drop

100605_002

100605C Conexant 2-1
Preliminary Information/Conexant Proprietary and Confidential

2.0 System Overview

CN8980

2.1 ZipWire2 Transceiver/Framer Functional Summary ZipWire2 HDSL2/SDSL Transceiver and Framer

2.1 ZipWire2 Transceiver/Framer Functional
Summary

Figure 2-2 illustrates a detailed block diagram of the ZipWire2
Transceiver/Framer. The 8051 microprocessor sections contain an internal
boot-up ROM, execution Program RAM (PRAM), Data Storage RAM, and
address decoding. The internal 8051 is responsible for performing the transceiver
startup, DSL Framer overhead management, interrupt handling, etc.

A full-featured API command set allows the user to configure the ZipWire2
system, query for status, execute loopbacks and test modes, and to dictate the
program flow.

In addition to controlling the internal sections of the ZipWire2 device, the
internal 8051 can be used to control other external devices, i.e., T1/E1 Framer,
LEDs, and so on.

The CN8980 is available in a 2- or 3-package option. In both options, the AFE
is the same. In the 2-package option the Transceiver and Framer are in a single
package. In the 3-package option, the Transceiver and Framer are in separate
packages.

2-2

Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CNg980

2.0 System Overview

ZipWire2 HDSL2/SDSL Transceiver and Framer

2.1 ZipWire2 Transceiver/Framer Functional Summary

Figure 2-2. ZipWire2 Transceiver/Framer Detailed Block Diagram

Intel Emulation Bus

EA

Boot Link
Serial Port 0
Serial Port 1

EXT8051

EXROM
devadr(2:0) / bootop(3:0)

start(5:0)

ZipWire2
- AFE Copper
o Pair

—Bpocx

PCM Bus

U CLK_UP_O
{} * 4096 x 8 ROM -
ext Up clock ~__GPIO/ or Serial Boot (P1.0/T2, P1.1/T2EX, P3.4/T1)_
8051 Interface 8051 Core . Serial Port 0 for Diagnostics (RS$232) o
MUX Test Port . e Serial Port 1 for Group Talk S
A A A A A
g 8 w z) w| 2 K g 8
—~| © k=] E=1 I) . .
HEEREE Clk 2 B 5 EE ZipWire2
a8l < (S| Transceiver/Framer
YyYyYyvevyy yvy A\
CR= Bus Interface MUX _ /
T 3 = B -
8 = w wE o
© i} = - [Q
o < £ < '8 [&] /
Fixed Programmable Device ;
Memory Address Decoder Boot-up & Start-up Device Adr(2:0) / Boot OpCode
O AN®S I ON i L
Mapped | 33%%3388% Registers e s
AFE Serial
Reg | Data Interface
Map DSP »
AFE Serial
Int Control Interface
4 Framed
¥ Serial Data
1
Reg DSL()
Map Framer <
Host Port
/
1024 x8 DPRAM | [N
Int IN Reg 0 x 001
OUT Reg 0 x 00 !
8192 x 8
- Data RAM
65536 x 8
\AA/ o Program RAM
S g E 88]%
C] Master Bus Interface / z °°
g < Memory Control €
[=] >
w
7Y
Master Bus with < } J\ /L J\ /L >
Memory Control and Data FLASH SRAM External
Program Data RAM Devices
RAM (only if needed) (optional)

)

RAM Bus »
HOST_INT

NOTE(S):
(1) This figure illustrates a 2-package option. In a 3-package option, the DSL Framer would be in a separate package.

100605_003

100605C

Conexant

2-3

Preliminary Information/Conexant Proprietary and Confidential

2.0 System Overview

CN8980

2.2 ZipWire2 Transceiver/DSP Functional Summary

ZipWire2 HDSL2/SDSL Transceiver and Framer

2.2 ZipWire2 Transceiver/DSP Functional
Summary

Figure 2-3 illustrates a detailed block diagram of the ZipWire2 Transceiver/DSP
section. The transmitter receives a bit stream from the DSL Framer and maps the
data bits to the appropriate PAM symbols. An optional precoding block which
supports both Tomlinson-Harashima precoding as well as Tomlinson-Harashima
precoding combined with Trellis shaping follows the PAM mapper. The signal is
then processed by the transmit filter to achieve the desired time and/or frequency
domain characteristics before being forwarded to the Analog Front-End (AFE).

The receiver receives serialized data from the AFE device and from the
precoded symbols from the bit pump transmitter. The precoded symbols are fed
into an Echo Canceler (EC) which estimates the echo response and subtracts it
from the AFE samples. The signal is then equalized using a Feed Forward
Equalizer (FFE) and a Decision Feedback Equalizer (DFE). Finally, a TCM
decoder is used to recover the information bits. The DFE is used only during
startup. An error predictor is also used as a part of the startup algorithm and as a
precoder coefficient adaptation machine during normal operation.

Figure 2-3. ZipWire2 Transceiver/DSP Detailed Block Diagram

ZipWire2 Transceiver/DSP Section
TRANSMITTER —
Precoder =
8 ™ Analog
Symbol Trellis Whitening X 8 || bigitar | pia U
From| | Generator Encoder ' Filter Filter Frontend
Framer
Transmit
Symbol
ZipWire2
RECEIVER ,—l AFE
Echo
RX TCM Canceler
To| | Logger Decoder
Framer
3
Detector N . 3 RX Analog
DAGC = 11 Digital] ap Je] mPut
,J Frontend
FELM SLM
EP
Timing Timing Clock gﬁgé AD
Detector[™] Filter [™]Synthesis|]]
DFE
(only for
acquisition)
CONTROL '"te"uptl ‘“P System
Test Control Interface ok
Bus Meters Timers
Interface uP
Test Bus
100605_004
2-4 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CN8&980 2.0 System Overview
ZipWire2 HDSL2/SDSL Transceiver and Framer 2.3 ZipWire2 DSL Framer Functional Summary

2.3 ZipWire2 DSL Framer Functional Summary

Figure 2-4 illustrates a detailed block diagram of the ZipWire2 DSL Framer
section. The DSL Framer supports HDSL1, HDSL2, and custom frame structure
applications. The DSL Framer provides clock, data, and frame format conversion
from various PCM frame formats to various DSL applications. The DSL Framer
supports Multi-Pair configuration such as T1 two loops, E1 two and three loops,
or any Point-to-Multipoint (P2MP) application by cascading several DSL
Framers. The DSL Framer provides full PCM termination capabilities, which
include synchronization and management of E1 PRA and T1. The DSL rate can
vary from 144 kbps up to 4,640 kbps (2 X E1 + Overhead), and the PCM rate can
vary from 64 kbps up to 8,192 kbps (4 X E1) and any custom PCM rate and frame
format within this range. The details of the DSL Framer section are described in
Chapter 6.0.

The ZipWire2 DSL Framer can also be configured to provide T1 path
termination capabilities and thereby eliminate the need for an external T1 Framer
in some applications. In particular, the ZipWire2 DSL Framer is capable of
generation and insertion of the T1 overhead in the transmit direction as well as
alignment and checking of T1 overhead in the receive direction.

100605C Conexant 2-5
Preliminary Information/Conexant Proprietary and Confidential

CN8980

THLOAD

THDAT

(to DSP)
HXP
(From DSP)
HBCLK

(From DSP)
RHMARK
RHAUX
RHDAT
(From DSP)

DSLSYNCO

-

—r----R--—"-"C-

[-----1-|-9
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'

bt - - ------

ZipWire2 HDSL2/SDSL Transceiver and Framer

===

TX PCM CLK

Y

HDSL
Transmitter | o - __ 1| __,

DSLSYNCI

FCEC SISt

HDSL

E

[t

-

FIFO || Receiver

TX Sync
Delay

E

-~ B
R

T

PCM
Transmitter

Y

PCM

DPLL REF_SEL

 HF CLK

DPLL

RPCLK

Data Path
Control/Clock

LEGEND:

TPCLK

Figure 2-4. DSL Framer Detailed Block Diagram

2.3 ZipWire2 DSL Framer Functional Summary

2.0 System Overview

=
MD
o
~

TPMFSYNC

>

TPINSDAT
TPINSEN
PREFSYNC
PEXTCLK

[e L

RPDPLLCLK

100605_005

100605C

Conexant
Preliminary Information/Conexant Proprietary and Confidential

]
RECLK
(From DSP)

2-6

CNg980

2.0 System Overview

ZipWire2 HDSL2/SDSL Transceiver and Framer

2.4 ZipWire2 AFE Functional Summary

2.4 ZipWire2 AFE Functional Summary

Figure 2-5 illustrates a detailed block diagram of the ZipWire2 AFE. The
ZipWire2 AFE performs the analog functions for transmission and reception of
HDSL2 OPTIS or HDSL1 2B1Q line-code signals. ZipWire2 AFE includes the
Digital-to-Analog (D/A) and Analog-to-Digital (A/D) conversion, data converter
anti-aliasing and post filtering, gain control, and line driving.

The ZipWire2 AFE serial digital interface connects to the ZipWire2
Transceiver/Framer device. The serial interface protocol is proprietary. The AFE
is controlled indirectly via the DSP transceiver. The analog interface consists of
the line driver feedback resistors, impedance matching resistors, external hybrid,
and transformer.

Figure 2-5. ZipWire2 AFE Block Diagram

— Gain }—
3.3VIO 5.0 VAA
5
test_pins a1 e e e e 1T T |
| 1
ser! tx - ! Switched- Switched- !
B o |S|po| ! Digital Filter Capacitor [— Capacitor H——— W
ser2_tx > | DAC Filter i Line
(Line |
afe_clk > ! Driver |
uP_w_d— pgital | | |
uP_r_d ™ 0, i Internal Clock Reference i)
ser_irq ™ DSP &| Drivers and Voltage I Hybrid
afe_cs ™| control| | Distribution Generator |
afe_sync »] |
afe_rst - ! |
| |
seri_rcv - | Switched- Gain L
PISO 1| Digital Filter Capacitor |—|
ser2_rcv - | | 9 p
_rcv | ADC Control i
ser3_rcv - i i
<~ AGND J7AGND
100605_00!
100605C Conexant 2-7

Preliminary Information/Conexant Proprietary and Confidential

2.0 System Overview

CN8980

2.5 ZipWire2 Transmit Path

ZipWire2 HDSL2/SDSL Transceiver and Framer

2.5 ZipWire2 Transmit Path

Figure 2-6 illustrates the various input data sources that can be sent out the
ZipWire2 link. This drawing includes all external inputs as well as internally
generated data sources. This figure does not illustrate loopbacks.

Figure 2-6. Detailed Transmit Data Path Block Diagram

DSP Pins
HDSL Aux (Framer Bypass)
L0
|
: API?
|
| Sync
INS_DAT : Word Isolated
Pulse Sine DSL
TPDAT 5 ' Wave S
& p=[TFIFO o L, . Line
—] I SCR 179] Line ST
Previous ﬁ o SCR > Driver
Data i — - < -
—» | DBANKI1 1 |- White
PRBS | Overhead — API? Noise
! (CRC, EOC, DSP
API? ! IND, etc.) FIFO API?
| Note: API?
: Overhead and Sync
| Word automatically
: MUXed on proper bits.
! DSL Framer Block Transceiver Block HDSL2 AFE
T
[_PCM Clock Domain] | | DSL Clock Domain |

| Legend:

Note: = Connected to a pin

DSL Framer MUX data on a per time slot basis. o— AP| Control Command

Bit Pump and AFE overrides all data. .

= Default Path (bold lines)
100605_007
2-8 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CNg980

2.0 System Overview

ZipWire2 HDSL2/SDSL Transceiver and Framer

2.6 ZipWire2 Receive Path

2.6 ZipWire2 Receive Path

Figure 2-7 illustrates the various output destinations received from the ZipWire2
link. This drawing includes all external inputs, as well as internally generated data
sources. This figure does not illustrate loopbacks.

Figure 2-7. Detailed Receive Data Path Block Diagram

DSP Pins
, HDSL Aux (Framer Bypass)
I U
|
API? g
: API?
Signal :
Table |
4 DBANK3 | R DSL
| ;
RPDAT) DBANK1/2 —— o —— —— Line
o RFIFO T DESCR DESCR A/D |tk et - -
© F (o} £ |—{pesen}-t—Hoeson}— {5
: s Overhead
| (CRC, EOC,
I IND, etc.)
i Discard
RPEXTDAT l
= | -
| Note:
| Overhead and Sync Word .
i automatically extracted on Transceiver
DSL Framer Block ! proper bits. Block HDSL2 AFE
T
[PCM Clock Domain | ' [DSL Clock Domain | Legend:
Note: = Connected to a pin
DSL Framer MUX data on a per time slot basis. *— API Control Command
Bit Pump and AFE overrides all data. = Default Path (bold lines)
100605_008
100605C Conexant 2-9

Preliminary Information/Conexant Proprietary and Confidential

2.0 System Overview CN8980
2.6 ZipWire2 Receive Path ZipWire2 HDSL2/SDSL Transceiver and Framer

2-10 Conexant 100605C
Preliminary Information/Conexant Proprietary and Confidential

3.0 Application Interfaces

This section illustrates various application configurations. Each figure will
illustrate different interface configurations.

3.1 Using Internal 8051 Processor Only

Figure 3-1 illustrates the block diagram of a single device ZipWire2 system. In
this application, the ZipWire2 8051 Processor can be used to control other
external devices, i.e., T1/E1 Framer. There are no other microprocessors in the
system.

For applications that need to modify the 8051 Processor code, refer to the
(TBD) Document. The default Flash can support the Bt8370 T1/E1 Framer, DIP
Switches, LEDs, and so on. The Bt8370 would be configured for a simple
transparent mode. Refer to Chapter 9.0 for more detail.

Figure 3-1. Single Pair Hardware Configuration

Optional

N— ——— |
' LEDs 110 !
: |
! l
|

- I
: | Glue Logic I | Flash External
| : uProc
: | (Emulator)
: Master | (Optional)
I Bus !
I | Configuration 2
: | Inputs RS232

I
| |
|
T1/E1 | "
! Mast Conf Emulator TX0O RX0 TX1 RX1
| TXLine BtF837o 'I;I1_|/LEJ1 ! e = e .
N ramer. | ybri
: or : PCM AFE ZipWire2 Transformer | g
| ; Interface AFE .
| R1;(1 /LE1 UL : ZipWire2 Transceiver/Framer Interface Prituergt?on Twisted
: ine | Group 0, Device 0 Pair
| | (Group/Flash Master)
| I
L ;
100605_009
100605C Conexant 3-1

Preliminary Information/Conexant Proprietary and Confidential

3.0 Application Interfaces

CN8980

3.1 Using Internal 8051 Processor Only

ZipWire2 HDSL2/SDSL Transceiver and Framer

Figure 3-2 illustrates the hardware configuration for a standard HSDL1 2T1,
2E1, or 3E1 configuration. The PCM interface bus of the separate devices is
connected to the T1/E1 Framer. The first device is designated as the Group and
Flash Master that controls the external devices and could be connected to an
external host processor via the RS232 port. The Group Master communicates
with the other devices via the Group Talk Serial Link.

Figure 3-2. Multi-Pair Hardware Configuration

Optional

| |
| |
| |
| |
| |
| |
| |
| A |
| | Gilue Logic I | ey External
: ! uProc
| | (Emulator)
|] ’
| Master | (Optional)
: Bus ! o
onfiguration
|
| : Inputs RS232
| |
| |
| T1/E1 |
! ! Mast Confi Emulator TX0 RX0 TX1 RX1
| _TXLine | BBS70TVE1 | | sl N LS st
\ Framer/LIU | Hybrid
: or : :='(t;l\:|f AFE bebs] ZipAv'\:IEeZ Transformer | g—pm
7 ntertace
! R-I;(”I_a il es: | ZipWire2 Transceiver/Framer LT Prituergt?on Twisted
: ine : Group 0, Device 0 Pair
| | (Group/Flash Master)
| |
| |
ST TT T T T - Configuration Group
Inputs Talk
Master Config Emulator TX0 RX0 TX1 RX1
Bus Pins Port i
™ Hybrid
- :='(t;l\:|f AFE bahn] ZipWire2 Transformer | g—pm
nterface AFE i
ZipWire2 Transceiver/Framer LTS Pri?ergt?on Twisted
Group 0, Device 1 Pair
(Group Slave)
PCM Bus Configuration
Interface Inputs
Master Config Emulator TX0 RX0 TX1 RX1
Bus Pins Port i
] Hybrid
L . |PCM AFE ZipWire2 Transformer | g—pm
Interface AFE .
ZipWire2 Transceiver/Framer LT Prituergt?on Twisted
Group 0, Device 2 Pair
(Group Slave)
100605_01
3-2 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CN8980 3.0 Application Interfaces
ZipWire2 HDSL2/SDSL Transceiver and Framer 3.2 Using an External Embedded Host Processor

3.2 Using an External Embedded Host Processor

Figure 3-3 illustrates a multidevice configuration with an external host processor
present. The 8051 Processor can handle up to eight ZipWire2 devices within a
group. One device is the Group Master and the other seven devices are Group
Slaves. The 8051 processor does not limit the number of ZipWire2 groups.

The Group Talk Serial Link is used for downloading the program and
communicating API commands from the Group Master to the Group Slaves.

nNOoTE: The PCM and AFE interfaces are not shown in these figures.

Figure 3-3. Group Master/Group Slave Multi-Pair Hardware Configuration

Group Talk Serial Link

Y JW R
TX RX TX RX TX_RX
| 8051 | | 8051 | | 8051 |
Host Host Host
Port || ————————- Port Port | [

) INTR
Group 0, Device 7 Group 0, Device 1 Group 0, Device 0 — -
-

[Group Talk Serial Link [|

TX_RX TX_RX TX_RX Host
Processor
| 8051 | | 8051 | | 8051 |
Host Host Host
Port || ——————==—- Port Port | g .
uProc
Bus
Group 1, Device 7 Group 1, Device 1 Group 1, Device 0
Host
> Flash

Group Talk Serial Link

Other
TX RX TX RX 3| Devices
| 8051 | | 8051 |
Host Host
Port Port -
Group 7, Device 7 Group 7, Device 0
100605_011
100605C Conexant 3-3

Preliminary Information/Conexant Proprietary and Confidential

3.0 Application Interfaces

CN8980

3.2 Using an External Embedded Host Processor

Figure 3-4. Master Multi-Pair Hardware Configuration

ZipWire2 HDSL2/SDSL Transceiver and Framer

Figure 3-4 shows the hardware configuration when the host processor is

connected directly to the Host Port of all of the ZipWire2. All of the ZipWire2
would be configured as Group Masters. This would allow the host processor to

access all of the ZipWire2 without using the Group Talk interface.
The Group Talk interface is not used in this configuration.

| 8051 |
Host

| 8051 |
Host

| 8051 |
Host

Port < Port Port
INTR
Group 0, Device 7 Group 0, Device 1 Group 0, Device 0 — -]
-
| 8051 | | 8051 | | 8051 |
Host Host Host Host
Port < Port Port Processor
Group 1, Device 7 Group 1, Device 1 Group 1, Device 0
i uProc
Bus
| -
|
|
|
| H
ost
> Flash
| 8051 | | 8051 |
Host Host
Port | g Port Other
| Devices
Group 7, Device 7 Group 7, Device 0
100605_012
3-4 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CNg980

3.0 Application Interfaces

ZipWire2 HDSL2/SDSL Transceiver and Framer 3.2 Using an External Embedded Host Processor

Figure 3-5 shows the hardware configuration when the host processor is
connected directly to the Group Master and a redundant Group Master. This
would allow the host processor to switch to the redundant Group Master in the
unlikely event the Group Master ZipWire2 device has a physical defect that
renders it unusable. By switching to the redundant Group Master, this will allow
the other Group Slave devices to be serviced by the host processor.

The host processor would be responsible for switching an external MUX to
change the source of the Group Master. Each ZipWire2 behaves identically when
the API destination field received via the Host Port Interface matches the device
ID. There is no special API command to switch the Group Master, the host
processor just needs to communicate with the redundant Group Master. The
device ID must remain fixed with the group, that is, the redundant Group Master
would still have the device ID of 1.

The Group Talk interface is still provided to download the program to all of
the ZipWire2 devices and to communicate API commands.

Figure 3-5. Redundant Group Master Multi-Pair Hardware Configuration

Group Talk Serial Link ﬂﬁ +
\i ; Y
TX RX TX RX TX RX
| 8051 | N | | 8051 | u — | 8051 | u
ost ost ost
Port Port | [Port | [
Group 0, Device 7 Group 0, Device 1 Group 0, Device 0 o
Wire| INTR_
o | OR -
TX RX TX RX TX RX
| 8051 | H | 8051 | H —T | 8051 | H - Host
ost ost ost
Port|| ———~——~ Port | [Port Processor
Group 1, Device 7 Group 1, Device 1 Group 1, Device 0
1
| uProc
: Bus -
1
1
TX RX TX RX TX RX Host
| 8051 |H | 8051 |H —T | 8051 |H » Flash
ost ost ost
Port Port | [Port | [
Group 7, Device 7 Group 1, Device 1 Group 7, Device 0 Other
bl Devices
100605_061
100605C Conexant 3-5

Preliminary Information/Conexant Proprietary and Confidential

3.0 Application Interfaces CN8980
3.3 Multi-Pair DSL Framer Configuration (Cascade Mode) ZipWire2 HDSL2/SDSL Transceiver and Framer

3.3 Multi-Pair DSL Framer Configuration
(Cascade Mode)

The DSL Framer PCM bus can operate up to 8 MHz by cascading multiple
ZipWire2 devices. Multi-Pair configuration is necessary to support several
applications: Point-to-Multipoint, T1 transport over two HDSL wire pairs
(Bellcore standard), or E1 transport using two or three HDSL wire pairs (ETSI
standard). Several cascading DSL framers can support these applications and
more.

The following pins are used in cascade mode: DSLSYNCI, DSLSYNCO,
PEXTCLK, and RPEXTDAT.

Two options can be used to implement Multi-Pair configuration:

* PCM Bused (see Figure 3-6) enables the connection of an unlimited
number of framers to receive the PCM highway interface in which each
framer contributes/routes different time slots to/from the PCM highway. In
this option, none of the framers carry a complete PCM frame; therefore,
PCM framing termination (PRA) is not feasible.

* PCM Cascade (see Figure 3-7) enables transmit and receive PCM framing
(PRA) by routing the receive PCM frame data from DSL framers 2 and 3
to DSL framer 1 (master) using the RPEXTDAT pin. This configuration is
limited to three DSL framers.

On the transmit path, both configuration options behave the same and have the
same capability.

The transmit PCM signal (clock, data, and sync) are connected to the transmit
PCM pins of each DSL framer while each framer is programmed independently
to route any incoming PCM data combination to the HDSL channel.

In the receive path, the master framer aligns the slaves’ (DSL framer 2 and
DSL framer 3) receive PCM time base using the PREFSYNC bidirectional pin.
The recovered PCM clock is then provided to the slave framers using RPCLK and
PEXTCLK pins. This capability enables the generation of a common receive
PCM time base for all DSL framer receive channels and reliably reconstructs the
PCM frame.

The active DPLL (typically located in the master framer) is able to select any
DSL frame reference (for the DPLL phase detector) using DSLSYNCI and
DSLSYNCO pins. This allows the master to switch DSL reference sources when
the selected pair becomes inactive (HDSL loss-of-signal detection).

3-6 Conexant 100605C
Preliminary Information/Conexant Proprietary and Confidential

CN8980 3.0 Application Interfaces
ZipWire2 HDSL2/SDSL Transceiver and Framer 3.3 Multi-Pair DSL Framer Configuration (Cascade Mode)

Figure 3-6. Multi-Pair Configuration—PCM Bused

TX PCM DATA »| TPDAT >
TX PCM MF »| TPMFSYNC AFE |- AFE
TX PCM CLK »| TPCLK Master Interface |-
ZipWire2 B
DSP and DSL
RPDAT r
RX PCM MF RPMFSYNC ' ramer
RX PCM CLK -t RPCLK
_=——PEXTCLK DSLSYNCO
= PREFSYNC DSLSYNCIN |-
»| TPDAT >
»| TPMFSYNC AFE [AFE
| TPCLK Slave Interface |
ZipWire2 B
RX PCM DATA ~= RPDAT DSF;:and DSL
RPMFSYNC ' ramer
RPCLK
»| PEXTCLK DSLSYNCO
> DSLSYNCIN
Wired OR PREFSYNC
»| TPDAT >
»| TPMFSYNC AFE |- AFE
1 TPCLK Slave Interface |-
ZipWire2 B
repar DSP and DSL
RPMFSYNC Framer
RPCLK
»| PEXTCLK DSLSYNCO
»| PREFSYNC DSLSYNCIN |-
100605_013
100605C Conexant 3-7

Preliminary Information/Conexant Proprietary and Confidential

3.0 Application Interfaces

CN8980

3.3 Multi-Pair DSL Framer Configuration (Cascade Mode)

Figure 3-7. Multi-Pair Configuration—PCM Cascade

ZipWire2 HDSL2/SDSL Transceiver and Framer

TX PCM DATA »| TPDAT >
TX PCM MF »TPMFSYNC Master AFE |- AFE
- . . Interface |-
TX PCM CLK TPCLK ZipWire2 >
RX PCM DATA - repar DSP and DSL
»|RPEXTDAT Framer
RX PCM MF RPMFSYNC
RX PCM CLK - RPCLK
_—PEXTCLK DSLSYNCO
— |PREFSYNC DSLSYNCIN |-
»| TPDAT >
»TPMFSYNC Slave AFE | AFE
- - Interf -
| TPCLK leere2 nterface =
rpoar PSP and DSL
»{RPEXTDAT Framer
RPMFSYNC
RPCLK
»| PEXTCLK DSLSYNCO
»| PREFSYNC DSLSYNCIN |-=
»| TPDAT >
>|TPMFSYNC Slave AFE | AFE
»TPCLK ZipWire2 Interface |-
rppar DSP and DSL
RPEXTDAT Framer
RPMFSYNC
RPCLK
»|PEXTCLK DSLSYNCO
»| PREFSYNC DSLSYNCIN |-
100605_014
3-8 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CN8980
ZipWire2 HDSL2/SDSL Transceiver and Framer

3.0 Application Interfaces
3.4 ZipWire2 Transceiver/Framer to Bt8370 T1/E1 Interface

3.4 ZipWire2 Transceiver/Framer to B16370
T1/E1 Interface

Figure 3-8 illustrates one possible configuration for the ZipWire2

Transceiver/Framer to Bt8370 T1/E1 Interface.

Figure 3-8. ZipWire2 Transceiver/Framer to Bt8370 T1/E1 Interface

CLADO
RSBCKI
RCKO »| TPCLK
RPCMO »| TPDAT
RMSYNC = TPMFSYNC ZipWire2
Bt8370 DSL Framer
(T1/E1 Framer)
Interface
TMSYNC [= RPMFSYNC
TPCMI |- RPDAT
TCKI [RPCLK
TSBCKI <J
100605_015
100605C Conexant 3-9

Preliminary Information/Conexant Proprietary and Confidential

3.0 Application Interfaces

CN8980

3.5 DSL Framer to CN8228 (ATM Phy) Interface

ZipWire2 HDSL2/SDSL Transceiver and Framer

3.5 DSL Framer to CN8228 (ATM Phy) Interface

Figure 3-9 illustrates how to connect the ZipWire2 device to the CN8228 ATM
Phy device when using the ZipWire2 DSL Framer block. In an HTU-C (central
office) application, the DSL Framer DPLL would be programmed to open loop
mode to provide the clock reference. In an HTU-R (remote terminal) application,
the DSL Framer DPLL would be programmed to closed loop mode to recover the
PCM clock reference from the HTU-C. The DSL Framer would generate the
transmit and receive a multi-frame sync reference and feed it to the CN8228
device. The multi-frame sync signals would only be required in channelized
applications where individual time slots are sourced from different devices.
Figure 3-9 illustrates only one port connection.

Figure 3-9. DSL Framer to CN8228 (ATM Phy) Interface Diagram

LTxData »-| LTDAT TXDAT »| TXDAT
LTxMrk | TPMFSYNC
LTxClk | ’ »| TPCLK HXP |- HXP
CN8228 DSL Bit Pump pg | are
ATM Phy Framer Interface o
LRxData RPDAT RXDAT |- RXDAT
LRxMrk <—ri\— RPMFSYNC
LRxClk | RPCLK HXCLK |- HXCLK
100605_106
3-10 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CNg980

3.0 Application Interfaces

ZipWire2 HDSL2/SDSL Transceiver and Framer 3.6 DSL Framer Bypass to CN8228 (ATM Phy) Interface

3.6 DSL Framer Bypass to CN8228 (ATM Phy)
Interface

Figure 3-10 illustrates how to connect the ZipWire2 device to the CN8228 ATM

Phy device when the ZipWire2 in operating in DSL Framer Bypass mode. In an

HTU-C (central office) application, the bit pump transceiver would provide the

clock reference. In an HTU-R (remote terminal) application, the bit pump

transceiver would perform the timing recovery to recovery the clock reference

from the HTU-C. The multi-frame sync references would not be connected.
Figure 3-10 illustrates only one port connection.

Figure 3-10. DSL Framer Bypass to CN8228 (ATM Phy) Interface Diagram

LTxData | TXDAT
LTxMrk
LTXCIk |t HXP
CN8228 Bit Pump AFE | o »| AFE
ATM Phy Interface
LRxData [«#—— ——- RXDAT
LRxMrk
LRxCIk |- HXCLK
100605_107
100605C Conexant 3-11

Preliminary Information/Conexant Proprietary and Confidential

3.0 Application Interfaces

CN8980

3.7 Dual Mode CN8228 (ATM Phy) Interface

ZipWire2 HDSL2/SDSL Transceiver and Framer

3.7 Dual Mode CN8228 (ATM Phy) Interface

Figure 3-11 illustrates how to connect the ZipWire2 device to the CN8228 ATM
Phy device when both modes (see Figures 3-9 and 3-10) need to be supported.
This interface connection would be required when the system needs to support
interoperability with legacy HDSL1 applications that do not use the DSL Framer
as well as HDSL2 applications that use the DSL Framer.
The DSL Framer has the ability to three-state the TXDAT and RPDAT signals.
The other common signals must be externally three-stated to prevent contention.
A multiplexer can be used instead of a three-state buffer.
Figure 3-11 illustrates only one port connection.

Figure 3-11. Dual Mode CN8228 (ATM Phy) Interface Diagram

N
Three-state
LTxData | TPDAT TXDAT | TXDAT
LTXMrk [TPMFSYNC
LTxClk |-t | TPCLK HXP |- HXP
ATM Phy Framer Interface o
LRxData :IJ: RPDAT (&) RXDAT |- RXDAT
LRxMrk RPMFSYNC
LRxClk A—J;—Q— RPCLK HXCLK |- 1] HXCLK
Three-state /‘
Three-state
1
Three-state
&—TXDAT and RPDAT have internal three-state buffers.
100605_108
3-12 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CNg980

3.0 Application Interfaces

ZipWire2 HDSL2/SDSL Transceiver and Framer

3.8 DSL Framer to MUSYCC Interface

3.8 DSL Framer to MUSYCC Interface

Figure 3-12 illustrates how to connect the ZipWire2 device to the CN8474
Multichannel Synchronous Communications Controller (MUSY CC) device when
using the ZipWire2 DSL Framer block. In an HTU-C (central office) application,
the DSL Framer DPLL would be programmed to open loop mode to provide the
clock reference. In an HTU-R (remote terminal) application, the DSL Framer
DPLL would be programmed to closed loop mode to recover the PCM clock
reference from the HTU-C. The DSL Framer would generate the transmit and
receive multi-frame sync reference and feed it to the CN8474 device. The
multi-frame sync signals would only be required in channelized applications
where individual time slots are sourced from different devices.

Figure 3-12 illustrates only one port connection.

Figure 3-12. DSL Framer to MUSYCC Interface Diagram

TDAT =1 L TDAT TXDAT | TXDAT
TSYNC |-= TPMFSYNC
TCLK |- ’ 1 TPCLK HXP |- HXP
CN8474 DSL Bit Pump arg | are
MUSYCC Framer Interface .
RDAT RPDAT RXDAT |- RXDAT
RSYNC <—Jl\— RPMFSYNC
RCLK |- RPCLK HXCLK | HXCLK
100605_109
100605C Conexant 3-13

Preliminary Information/Conexant Proprietary and Confidential

3.0 Application Interfaces

CN8980

3.9 DSL Framer Bypass to MUSYCC Interface

ZipWire2 HDSL2/SDSL Transceiver and Framer

3.9 DSL Framer Bypass to MUSYCC Interface

Figure 3-13 illustrates how to connect the ZipWire2 device to the CN8474
Multichannel Synchronous Communications Controller (MUSY CC) device when
the ZipWire2 in operating in DSL Framer Bypass mode. In an HTU-C (central
office) application, the bit pump transceiver would provide the clock reference. In
an HTU-R (remote terminal) application, the bit pump transceiver would perform
the timing recovery to recovery the clock reference from the HTU-C. The

multi-frame sync references would not be connected.
Figure 3-13 illustrates only one port connection.

Figure 3-13. DSL Framer Bypass to MUSYCC Interface Diagram

TDAT | TXDAT
TSYNC
TCLK HXP
MUSYCC Interface
RDAT ————— RXDAT
RSYNC
RCLK HXCLK
100605_110
3-14 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CNg980

3.0 Application Interfaces

ZipWire2 HDSL2/SDSL Transceiver and Framer

3.10 Dual Mode MUSYCC Interface

3.10 Dual Mode MUSYCC Interface

Figure 3-14 illustrates how to connect the ZipWire2 device to the CN8474
Multichannel Synchronous Communications Controller (MUSY CC) device when
both modes (see Figures 3-12 and 3-13) need to be supported. This interface
connection would be required when the system needs to support interoperability
with legacy HDSL1 applications that do not use the DSL Framer as well as
HDSL2 applications that use the DSL Framer.
The DSL Framer has the ability to three-state the TXDAT and RPDAT signals.
The other common signals must be externally three-stated to prevent contention.
A multiplexer can be used instead of a three-state buffer.
Figure 3-14 illustrates only one port connection.

Figure 3-14. Dual Mode MUSYCC Interface Diagram

N

TDAT
TSYNC
TCLK
CN8474
MusyYcc
RDAT
RSYNC
RCLK

Three-state

TPDAT

Y

TXDAT

A A

TPMFSYNC

Y

D

TPCLK HXP

A

Y

DSL
Framer

RPDAT (&)

RXDAT [

RPMFSYNC

‘—L<F

RPCLK

HXCLK [

Three-state

e

Three-state

1

Three-state

&—TXDAT and RPDAT have internal three-state buffers.

TXDAT

HXP

RXDAT

HXCLK

Bit Pump AFE
Interface

Y

AFE

100605_111

100605C

Conexant

Preliminary Information/Conexant Proprietary and Confidential

3-15

3.0 Application Interfaces

CN8980

3.11 Multiple ZipWire2 Devices to CN8228 or MUSYCC Interface

ZipWire2 HDSL2/SDSL Transceiver and Framer

3.11 Multiple ZipWire2 Devices to CN8228 or

MUSYCC Interface

Figures 3-15 and 3-16 illustrate how to connect multiple ZipWire2 devices to the
CN8228 ATM Phy or CN8474 Multi-channel Synchronous Communications
Controller (MUSYCC) device. Figure 3-15 illustrates the configuration where
there is one ZipWire2 device per one ATM or HDLC port. Figure 3-16 illustrates
the configuration where there are multiple ZipWire2 devices bussed together per

one ATM or HDLC port.

NOTE: This diagram does not show the dual mode option that supports either the
DSL Framer or Framer Bypass mode.

Figure 3-15. Multiple ZipWire2 Devices to CN8228 or MUSYCC Interface Diagram

CN8228 or MUSYCC
TxData »| LTDAT TXDAT »| TXDAT
TxMrk | TPMFSYNC
TxClk |- ’ »| TPCLK HXP |- HXP
Port DSL BitPump are|. | AFE
0 ‘ Framer Interface |
RxData [~ RPDAT RXDAT |- RXDAT
RxMrk |- J\ RPMFSYNC
RxClk |- ! RPCLK HXCLK |- HXCLK
TxData »-| LTDAT TXDAT »| TXDAT
TxXMrk | TPMFSYNC
TxClk [’ »| TPCLK HXP |- HXP
Port ‘ DSL Bit Pump AFE | 4 »| AFE
1 Framer Interface
RxData [-= RPDAT RXDAT |- RXDAT
RxMrk | i\ RPMFSYNC
RxClk [! RPCLK HXCLK [HXCLK
TxData »| LTDAT TXDAT »| TXDAT
TxMrk | TPMFSYNC
TxClk |- ’ »| TPCLK HXP |- HXP
Port DSL Bit Pump AFE | »| AFE
n ‘ Framer Interface |
RxData [RPDAT RXDAT |- RXDAT
RxMrk | i\ RPMFSYNC
RxClk f-e ! RPCLK HXCLK |- HXCLK
100605_112
3-16 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CN8980 3.0 Application Interfaces
ZipWire2 HDSL2/SDSL Transceiver and Framer 3.11 Multiple ZipWire2 Devices to CN8228 or MUSYCC Interface

Figure 3-16. Multiple ZipWire2 Devices to CN8228 or MUSYCC Interface Diagram

CN8228 or MUSYCC ZipWire2 Group #0
ZipWire2 #0
TxData /L | TPDAT TXDAT | TXDAT
TXMrk [t ,L_,L TPMFSYNC
TxClk |- 1 TPCLK HXP |- HXP
DSL Bit Pum
Port 0 P AFE | o »| AFE
Framer Interface
RxData |- N RPDAT RXDAT |- RXDAT
RxMrk | ’I‘—‘—']‘ ’L—’L RPMFSYNC
RxClk |- Pt el e RPCLK HXCLK |- HXCLK
ZipWire2 #1
TxData | TPDAT TXDAT | TXDAT
TxMrk ::L | TPMFSYNC
TxClk — | TPCLK HXP |-t HXP
DSL Bit Pump
|-} AFE |4 m»| AFE
el Framer Interface
RxData f RPDAT RXDAT |- RXDAT
RxMrk | | RPMFSYNC
RxClk | | RPCLK HXCLK |-t HXCLK
' ZipWire2 #n
TxData | TPDAT TXDAT | TXDAT
TxMrk | TPMFSYNC
TxClk " | TPCLK HXP |- HXP
DSL Bit Pum
Port n F P AFE «—»| AFE
- ramer Interface
RxData RPDAT RXDAT |- RXDAT
RxMrk 1 RPMFSYNC
RxClk | RPCLK HXCLK |- HXCLK
- | ZipWire2 Group #1
—-| ZipWire2 Group #n
100605_113
100605C Conexant 3-17

Preliminary Information/Conexant Proprietary and Confidential

3.0 Application Interfaces

CN8980

3.12 Deliverables

ZipWire2 HDSL2/SDSL Transceiver and Framer

3.12 Deliverables

The previous pages in this chapter provided an overview of several ZipWire2
applications. The following provides a list of the deliverables provided along with
the Conexant chip set and a breakdown of the deliverables for the different
ZipWire2 applications.

Data Sheet

Hybrid Component Values

HEX File — For customers using a host processor and who do not need to
modify the 8051 code.

APLH — Contains API Opcodes, parameters, structures, etc.

Source — For customers who need to modify the 8051 code. The bit pump
code would be a .LIB (or .OBJ). The customers would require the DSL
Manager, DSL Framer, T1/E1 Framer, and EVM source code to customize
for their application. This would require the customer to purchase our
recommended compiler tools.

Application Code Examples

3.12.1 Customers who do not wish to modify 8051 code

3.12.2

HEX File(s)

Hybrid Component Values
APLH

Data Sheet

Customers who wish to modify 8051 code to control other devices

HEX File(s)

Hybrid Component Values
APLH

Data Sheet

Source Code

Application Code Examples
Software Programmer’s Guide

3.12.3 Customers who wish to modify low-level DSL Framer code

HEX File(s)

Hybrid Component Values

APLH

Data Sheet

Source Code

Application Code Examples
Software Programmer’s Guide
DSL Framer Design Specification

3-18

Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

4.0 Built-In 8051 Core Detailed
Description

The ZipWire2 Transceiver/Framer has a built-in 8051 microprocessor core with
the following features:

Internal 256 bytes of direct and indirect RAM. Bytes from (0x20 to 0x2F)
consist of bit-addressable bits. Bytes 0x00 to 0x1F consist of four banks
for registers saving and usage during interrupts.

Internal 2 kB non-programmable (masked) program ROM.

Internal 8 kB data RAM.

Dual port 1 kB Host Interface RAM.

Two Asynchronous Serial (RS232) Interfaces.

One Synchronous Serial Interface.

Internal 64 kB Program RAM — lower 2 k and upper 1 k are inaccessible.
Overlaid with ROM and host interface RAM during boot load sequence.
Miscellaneous internal memory mapped peripherals.

Programmable chip select decoder.

Multiplex test bus interface.

Thirteen interrupt lines with six of them being assigned to external pins.
Three internal timers/counters.

The 8051 core executes in four oscillator cycles per instruction cycle and
supports dual data pointers. The 8051 core will run at ~27 MHz but defaults to
7 MHz at power-on so that a slow external program ROM can be used.

100605C

Conexant 4-1

Preliminary Information/Conexant Proprietary and Confidential

4.0 Built-In 8051 Core Detailed Description CN8980
4.1 Internal 8051 Data Space Memory Map ZipWire2 HDSL2/SDSL Transceiver and Framer

4.1 Internal 8051 Data Space Memory Map

Table 4-1 illustrates the internal memory map of the internal 8051 data space.

Table 4-1. Internal 8051 Memory Map

Memory Range Memory Size Destination
0x0000 — OxOFFF 4K Transceiver Function Register
0x1000 — Ox2FFF 8K DSP (Bit Pump)
0x3000 — Ox4FFF 8K Data RAM
0x5000 — Ox6FFF 8K DSL Framer
0x7000 — OXAFFF 16K Generic Chip Select #6
0xB00O0 — OXEFFF 16K Generic Chip Select #7
0xF000 — OxFBFF 3K Reserved
0xFCO0 — OXFFFF 1K Host Port RAM
4-2 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CNg980

4.0 Built-In 8051 Core Detailed Description

ZipWire2 HDSL2/SDSL Transceiver and Framer

4.2 Internal 8051 Interrupt Mapping

4.2 Internal 8051 Interrupt Mapping

All interrupt pins are configured as level triggered.

The Internal/External are describing which interrupt lines go to physical pins
on the ZipWire2 device rather which interrupt lines are internal/external to the
8051 core. That is, that column is relative to the ZipWire2 Device and not the
8051 core.

Internal 8051—1Internal to the 8051 core; does not come from other blocks of
the ZipWire2 Device.

Internal Device—Internal to the ZipWire2 device, but external to the internal
8051.

External—External to the ZipWire2 device, connected to a pin.

In the description column, the external interrupt #n references that it is

external to the internal 8051.

Table 4-2. Internal 8051 Interrupt Mapping

Interrupt # Level IIEI:(tterII::II Description

0 Active Low Internal Dev External Interrupt #0, DSP
1 Active Low Internal 8051 Timer #0
2 Active Low Internal Dev External Interrupt #1, DSL Framer (ZipWire2 Framer)
3 Active Low Internal 8051 Timer #1
4 Active Low Internal 8051 Serial Port #0—RS232
5 Active Low Internal 8051 Timer #2
6 Active Low Internal 8051 Power Fail
7 Active Low Internal 8051 Serial Port #1—Group Talk
8 Programmable External External Interrupt #2, User Definable
9 Active Low Internal Dev External Interrupt #3, Host Port RAM (*INTR_8051)
10 N/C N/C External Interrupt #4
11 N/C N/C External Interrupt #5
12 N/C N/C Watch-Dog, not implemented

100605C Conexant 4-3

Preliminary Information/Conexant Proprietary and Confidential

4.0 Built-In 8051 Core Detailed Description CN8980

4.3 ZipWire2 Transceiver Function Registers ZipWire2 HDSL2/SDSL Transceiver and Framer

4.3 ZipWire2 Transceiver Function Registers

The ZipWire2 Transceiver Function Registers (TFR) are memory-mapped in the
data RAM space. These registers are used to control the memory map of all the
chip selects, read input pins, control output pins, and control 8051 clock speed.
The address range is fixed at 0x00—OxFF.

4.4 Configuration Pins

There are four separate sets of pins that can be used to control the software flow
and configuration:

NOTE:

START([5:0]—6-Bit Startup Command Input

DEVADR]2:0]—3-Bit Device Address Input (see Section 4.6)
BOOTOP[3:0]—4-Bit Boot Mode Input (see Section 4.6)
DIP_SW[7:0]—38-Bit General Purpose Input (see Chapter 9.0 for details)

In the ZipWire2 EVM, the 8051 microprocessor CS7 (generic chip select)
is tied to a DIP switch which is then used to determine the system
configuration, loopbacks, test modes, and so on. For customers who have a
host microprocessor, it is recommended that this feature is implemented by
using the Host Port API commands to generate various test modes,
loopbacks, and so on. For customers who use the ZipWire2 without a host
processor, the DIP Switch is dependent on whether they need to have the
8051 drive a different device.

Table 4-3. START Bit Definitions

START Bit Description Bit(s) Definition

0 DSL System State 0 = Disabled (Out-of-Service)
1 = Enabled

1 DIP Switch Present 0=No
1="VYes

2 E1/T1 Framer Present 0=No
1="Yes

4:3 Terminal Type 0=HTU-C

1 =HTU-R
2 = Reg-C
3 =Reg-R

5 J— J—

4-4 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CN8980 4.0 Built-In 8051 Core Detailed Description
ZipWire2 HDSL2/SDSL Transceiver and Framer 4.4 Configuration Pins

4.4.1 8051 Timer/Counter Description

Table 4-4. Internal 8051 Timers/Counters

Timer Interval Usage
Timer 0 50 ms General Purpose Timer
Timer 1 115.2K RS232/Group Talk baud rate generator
Timer 2 — Unused
100605C Conexant 4-5

Preliminary Information/Conexant Proprietary and Confidential

4.0 Built-In 8051 Core Detailed Description CN8980

4.5 Internal 8051 Communication Interfaces ZipWire2 HDSL2/SDSL Transceiver and Framer

4.5 Internal 8051 Communication Interfaces

Table 4-7 lists the interfaces to communicate with external devices.

Table 4-5. 8051 Communication Interfaces

Interface

Description

Master Bus Microprocessor Interface Used by the Internal 8051 to control other external devices, i.e., T1/E1 Framer, LEDs,

and so on.

Host Port RAM Interface

Used by an embedded host processor to send APl commands to the ZipWire2 system.
The Host Port RAM uses a mailbox protocol to pass the API parameters.

RS232 Serial Interface

Used by an external host processor (PC or Terminal) to send APl commands to the
ZipWire2 system.

Group Talk Serial Interface

Used by the Internal 8051 to send API commands to the ZipWire2 slave systems.

4.5.1 Master Bus Microprocessor Interface

The master bus microprocessor interface allows the internal 8051 to control other
external devices, such as the T1/E1 Framer, LEDs, and so on. The master bus
interface provides a glueless interface to multiplexed and non-multiplexed
devices.

When connecting to a multiplexed address bus device, the MB_ADJ[7:0]
contain the multiplexed address and data lines. The MB_ADDR[15:8] contain the
upper 8-bits of the address while the MB_AD][7:0] contain the lower 8-bits. The
MB_ADDR([7:0] are not connected. The falling edge of MB_ALE indicates a
valid address. The *MB_OE behaves as an active-low read strobe. The *MB_WE
behaves as an active-low write strobe.

When connecting to a non-multiplexed address bus device, the MB_ALE is
not used. The MB_ADDR[15:0] contain the 16-bit address bus and the
MB_AD[7:0] contain the 8-bit data bus. The *MB_OE behaves as an active-low
output enable data strobe. The *MB_WE behaves as an active-low write strobe.

The Master Bus Interface timing is provided in Section 18.3.4.

4.5.2 Host Port RAM Interface

The Host Port RAM interface only needs to be connected when another
embedded processor needs to communicate with the ZipWire2 device. When a
ZipWire2 device is configured as a Group Master, the external Host Processor
connects directly to the Host Port RAM. The Host Port RAM should be treated as
a simple memory device.

The details of the Host Port RAM protocol is described in Section 15.4.

The Host Port timing is provided in Section 18.3.3.

4-6

Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CN8980 4.0 Built-In 8051 Core Detailed Description
ZipWire2 HDSL2/SDSL Transceiver and Framer 4.5 Internal 8051 Communication Interfaces

4.5.3 RS232 Serial Interface

The Internal 8051 processor can communicate with an external host processor
using a standard UART interface. The physical connection includes two lines:
RXDO (ball D19) and TXDO (ball B20). The data is transferred in an
asynchronous format:

115200 baud, 1 start bit, 8 data bits, 1 stop bit, no
parity.

4.5.4 Group Talk Interface

In multi-device configurations, the Group Talk Serial interface allows the Group
Master to communicate to the Group Slaves via an UART interface. The Group
Talk Serial interface is similar to the RS232 interface protocol except the Group
Master will broadcast an API command to all the Slaves. Then only the targeted
Slave (based on the destination field) will respond to (acknowledge) the Group
Master. The physical connection includes two lines: RXD1 (ball B18) and TXD1
(ball A19). The data is transferred in an asynchronous format:

115200 baud, 1 start bit, 8 data bits, 1 stop bit, no
parity.

When a ZipWire2 device is not being serviced, the Group Slave TXD1 outputs
will be three-stated to avoid bus contention.

The Group Master’s TXD1 output is connected to all of the Group Slave’s
RXD1 inputs. All of the Group Slave’s TXD1 outputs are connected to the Group
Master RXD1 input (see Figure 3-3).

100605C Conexant 4-7
Preliminary Information/Conexant Proprietary and Confidential

4.0 Built-In 8051 Core Detailed Description CN8980

4.6 Program RAM Download

4.6.1 Summary

ZipWire2 HDSL2/SDSL Transceiver and Framer

4.6 Program RAM Download

This section provides an overview of how to download a program into the internal
ZipWire2 PRAM.

Receive PRAM from an external flash (Group Master only).

— Only one external flash required per board.

Receive PRAM from an external host via the host port RAM interface
(Group Master only).

Receive PRAM from the Group Master via the Group Talk interface
(Group Slave only).

Receive PRAM from an external host via the RS232 Interface.

— The User Interface Program (UIP) uses this option.

The ZipWire2 device will be executing out of the internal boot ROM code
when downloading the PRAM.

The Group Master will be executing in operational mode when it
broadcasts the PRAM contents to the slave. The slave will be executing out
of the boot code.

Be able to download to only one device at a time (allows software upgrade
on a per-device basis).

After boot load, operational code will validate download via API
commands. This allows each device to perform a thorough self-test.
Either the internal 8051 or external host processor can validate download
procedures.

— Internal 8051 can only validate one group.

— External host processor can validate all groups.

4-8

Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CN8980 4.0 Built-In 8051 Core Detailed Description
ZipWire2 HDSL2/SDSL Transceiver and Framer 4.6 Program RAM Download

4.6.2 Download Description
Figure 4-1 illustrates an overview of the PRAM download mechanism.

Figure 4-1. ZipWire2 PRAM Download Overview

ZipWire2
-t Flash
Program RAM -
Group Talk In
Group - or RS232 (UIP)
Talk - o
Out 1o Host Port RAM
Don't
Output
|
BOOTOP Pin BOOTOP Pin
Broadcast Mode Receive Mode

100605_115

4.6.3 Dip Switch #2—DEVADR and BOOTOP Pins

Dip Switch #2 is connected to the DEVADR and BOOTOP Pins on the ZipWire2
device. All DEVADR and BOOTOP pins are inputs.

Table 4-6. Dip Switch #2 Definition

Bit 7 Bit 6:4 Bit 3:0
Reserved DEVADR(2:0] Pins BOOTOP[3:0] Pins
Table 4-7. DEVADR Bit Definitions
DEVADR Bit Master Description Slave Description
2-0 If the host processor is responsible for validating Group Device ID.
the download, the DEVADR must be set to 0. Must be in sequential order. If 4 devices are in a
If the internal 8051 is responsible for group (including the Group Master), the DEVADR bits
validating the download, then the DEVADR for the 3 slave devices must be labeled 1-3.

specifies how many devices are connected within
the group. This information is used after the
download is complete to validate each slave
device successfully completed the download
procedure. The number of devices is equal to
one more than the DEVADR value—a value of 2
implies 3 devices.

100605C Conexant 4-9
Preliminary Information/Conexant Proprietary and Confidential

4.0 Built-In 8051 Core Detailed Description CN8980

4.6 Program RAM Download

ZipWire2 HDSL2/SDSL Transceiver and Framer

Table 4-8. BOOTOP Bit Definitions

Bit #

Name

Description

1-0

Receive Mode

0 = Slave—Download the program RAM from the Group Talk.

1 = Reserved

2 = Master—Download the program RAM from the external Flash.
3 = Master—Download the program RAM from the Host Port.

Broadcast and Validate 0 = Host Processor is responsible for triggering the slave download process and

Mode

validating the download procedure.

1 = Internal 8051 is responsible for triggering the slave download process and
validating the download procedure. The master will broadcast its program RAM
contents. The DEVADR pins are used to determine the number of devices
expected. This option is only intended for a single processor configuration

Reserved

Must set low. Used during production test.

4.6.4 Download Protocol Overview

When downloading from an external flash, the program contents are simply
copied 1 byte at time from the flash to the internal 8051 PRAM.

When downloading from a host processor or Group Talk, API commands are
used to download blocks of the PRAM contents. The maximum block size is 75
bytes. The host processor uses the host port RAM to transfer the data.

In a group environment, the Group Master uses the Group Talk interface to
transfer the data to the slave devices. The protocol supports a broadcast mode so
multiple slave devices can be downloaded simultaneously. The Group Slaves do
not acknowledge any of the download API commands.

The start download API command is used to trigger the download process.
This initial packet will have a data parameter of two bytes, which is the actual size
of the RAM code to be downloaded. All subsequent packets will have a data
parameter length of 75 bytes until the last one, which will contain only the length
of byte necessary to complete the download. Upon completion of the download,
the Group Master will query the status of each slave to assure that it properly
received the download and is operating properly. A new download is started for
slave devices not in proper operation and notification to the host is provided if
this second attempt fails.

4.6.5 Download Times

4.6.5.1 Host Port RAM
Interface

4.6.5.2 Group Talk
Interface

The host port RAM interface will take TBD seconds to complete. The exact time
is a function of the internal 8051 and host processor’s clock speeds and loading.

The Group Talk interface is an asynchronous serial stream operating at 115200
baud. Each block of 75 bytes of PRAM data include 6 additional bytes of
overhead. Thus a 65535-byte program would ideally take 6.1 seconds to
download. However, the Group Master has to service itself and other slave
devices (if they are in operational mode), so the download process will take ~10
seconds.

The exact download time is a function of the program size and the Group
Master’s microprocessor load.

4-10

Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CN8980 4.0 Built-In 8051 Core Detailed Description
ZipWire2 HDSL2/SDSL Transceiver and Framer 4.6 Program RAM Download

4.6.6 Download and Device Validation

There are two aspects of validation: download and device. The download
validation consists of a simple checksum that validates that the transmitted
program data successfully reached the slave device. The download validation is
performed during the boot code mode. The checksum byte is the last byte sent.

The device validation is a thorough self-test that qualifies the integrity of the
device. The device validation is performed during the operational code. After the
slave performs its self-test, the Group Master or host processor will query the
self-test results to determine if the device is functional.

In a single processor environment, the Group Master, which is attached to an
external flash, uses the DEVADR pins to determine how many devices are present
in the system. In a dual processor environment, the host processor uses a profile
registry to determine how many devices are present in the system.

4.6.7 Download Group Master Device

Each Group Master can receive the program code from either an external flash or
from the host processor via the host port interface.

When receiving from an external flash, the Group Master will read the entire
60 kbyte from the flash into internal Program RAM. When receiving from the
host processor, the Group Master uses the API handshake protocol to download
the program contents into internal PRAM. The size of the operational code is
variable and is specified in the protocol. After the Group Master has received its
Program RAM contents, the device switches to operational code.

The Download and Broadcast Mode pin (BOOTOP #2) determines the Group
Master flow after it switches to operational mode. When the BOOTOP #2 pin is
low, the host processor is responsible for triggering the Group Master to broadcast
the Program RAM to the slave devices. The Group Master can either transmit its
current Program RAM contents or transmit a separate Program RAM content.
The host processor is then responsible for validating each slave device
downloaded successfully. The Host Processor uses the _DSL_VERSIONS
(0x8A) API command to determine if the slave download was successful.

4.6.8 Download Group Slave Device

Each Group Slave can only receive the program code from the Group Talk
interface. The Group Slave waits for the Download Start (Length) API to indicate
that the download has started. Each block of data is transferred using the
Download Data API command. The Group Slave maintains a running checksum
of the data. When the Download Complete (Checksum) command is received, the
Group Slave compares the received checksum to its computed checksum to
determine the validity of the data download. If the checksum fails, the Group
Slave performs a software reset and waits for another download. If the checksum
passes, the Group Slave switches to operational code where it can respond to
additional API commands.

100605C Conexant 4-11
Preliminary Information/Conexant Proprietary and Confidential

4.0 Built-In 8051 Core Detailed Description CN8980

4.6 Program RAM Download

ZipWire2 HDSL2/SDSL Transceiver and Framer

4.6.9 Download Single Processor Configuration

Figure 4-2 illustrates the single processor configuration with the appropriate
DEVADR/BOOTOP pin settings. The external flash is connected to the Group
Master. In this application, all devices have the same program.

Figure 4-2. Single Processor Configuration

|

Y

|V Y

TX RX

RESET OUT
RESET IN

MB pP Bus

TX RX TX RX
12} 12}
RESET OUT a RESET OUT a
RESET IN o RESET IN o
; ; -t Flash
8051 2 | 8051 | 2

Group 0, Device 0

Group 0, Device m Group 0, Device 1 (Group Master)
RESET
BOOTOP =0x0 BOOTOP =0x0 BOOTOP =0x 6
DEVADR =m DEVADR = 1 DEVADR =m

100605_116

After power-on (or reset), the Group Master and Slave execute from the
internal ZipWire2 boot code. The Group Master will read the contents from the
flash into internal program RAM while the slaves await the download start API
command. After the Group Master finishes downloading the code from external
flash, it switches to operational mode. While in operation mode, the Group
Master polls the DEVADR and BOOTOP pins to determine if it needs to
download the code to a slave device.

If the DEVADR is 0 (one device only) or the BOOTOP Broadcast and Validate
Mode bit is not set, the master will not broadcast its program RAM contents to the
slave devices; otherwise the download is performed using the Group Talk
interface. After the slave download is completed, the slave devices perform a
download validation. If successful, the slave devices switch to operational mode,
otherwise the failed slave device performs a software reset and waits for another
download.

When in operational mode, the slave devices perform a self-test. The master
queries each slave device using the Group Talk protocol to confirm if the device
is functional. The master only queries the number of slave devices based on the
DEVADR pins. If the master detects that a slave did not successfully download,
then the master will issue an *RST_OUT to force the slaves to reattempt the
download for all slave devices. The master detects a failed slave device if a
time-out occurs during the Group Talk status request.

4-12

Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CN8980 4.0 Built-In 8051 Core Detailed Description

ZipWire2 HDSL2/SDSL Transceiver and Framer 4.6 Program RAM Download

4.6.10 Download Dual Processor Configuration

Figure 4-3 illustrates a dual processor configuration with the appropriate
DEVADR/BOOTOP pin settings. The host processor is connected to each Group
Master. In this application, each device can have a unique program. The Group
Master only downloads to devices within its group. There are no intergroup

dependencies.

Figure 4-3. Host Processor Configuration

|

Y | \ Y

TX RX TX RX TX RX
1] 1] 1]
RESET OUT a RESET OUT a RESET OUT @
| RESET IN o | RESET IN o | RESET IN el Host
)) all
2 2 ERE
Group 0, Device 0
Group 0, Device m Group 0, Device 1 (Group Master)
RESET
BOOTOP =0x0 BOOTOP =0x0 BOOTOP =0x 3
DEVADR =m DEVADR = 1 DEVADR =0
RESET \)

Y

Y Y

TX RX TX RX TX RX

2 2 2

RESET OUT o RESET OUT o RESET OUT o

= RESET IN g = RESET IN o = RESET IN g

s} Jis} s}

Group N, Device 0
Group N, Device m Group N, Device 1 (Group Master)
BOOTOP=0x0 BOOTOP =0x0 BOOTOP =0x3

DEVADR =m DEVADR =1 DEVADR =0

100605_117

After power-on (or reset), the Group Master and Slave execute from the
internal ZipWire2 boot code. The Group Masters will receive the internal
program RAM contents from the host processor while the slaves await the start
download API command. After each Group Master finishes downloading the
code from the host processor, they switch to operational mode. While in
operational mode, the host processor will send an API command to one of the
Group Masters to initiate the download to the slaves. The host processor can
either tell the Group Master to download its current program RAM or to
broadcast a separate program. The host processor can select the master to
download the code to all devices (broadcast) or can select one slave. All slave
devices would receive the same program code.

100605C Conexant 4-13
Preliminary Information/Conexant Proprietary and Confidential

4.0 Built-In 8051 Core Detailed Description CN8980

4.6 Program RAM Download

4.6.10.1 Redundant
Download Group Master

4.6.10.2 Device
Uniqueness

Group Master/Slave
Configuration

All Group Masters
Configuration

4.6.10.3 Group
Uniqueness

ZipWire2 HDSL2/SDSL Transceiver and Framer

When the Group Master is broadcasting its current program RAM, the host
processor issues the _DSL_VERSIONS API command to determine when the
download is complete. When downloading a separate program, the host processor
has to manually feed the program contents so it already knows when the
download is completed.

After the slave download is completed, the slave devices perform a download
validation. If successful, the slave devices switch to operational mode, otherwise
the failed slave device performs a software reset and waits for another download.
When in operational mode, the slave devices perform a self-test. The host
processor queries each slave device using an API command to confirm if the
device is functional. The host processor only queries the number of slave devices
based on its profile registry. If the host processor detects a slave did not
successfully download, then the host processor can reissue the download
command. Only the failed slave devices will reperform the download. The
successful slave devices will ignore any download API commands because they
are already in operational mode.

In the event one Group Master incurs a physical defect, one of the slave devices
can be redefined as the Group Master. The board must have the host processor
microprocessor bus connected to the second slave device. In addition, the Group
Talk transmit and receive signals must be swapped for the new Group Master.

There are two possible configurations to allow each ZipWire2 device to have a
unique program.

This configuration requires the master and slave devices to be in operational
mode. When programming a device with a new code, the host processor would
issue the hardware reset APl command to have that device reperform the boot
procedure. The master can now download the new code. Because the other
devices are in operational mode, they will ignore the download API commands.

This configuration requires each device to be connected to the host processor via
the host port interface. The host can program each ZipWire2 device
independently. The Group Talk is not used in this configuration.

Each group of ZipWire2 devices can have a unique PRAM. Each device within
the group has the same PRAM. The host processor can download a unique PRAM
to each master, which is then broadcast to each of its slaves.

4-14

Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CN8980 4.0 Built-In 8051 Core Detailed Description
ZipWire2 HDSL2/SDSL Transceiver and Framer 4.6 Program RAM Download

4.6.11 Download APl Commands

This section provides a summary of the download API commands. Refer to
Chapter 17.0 for details on each command.

4.6.11.1 Boot Code APl The following API commands are supported while the ZipWire2 device is in the
Commands boot code. During operational mode, the Group Slave devices will ignore all of
the download API commands. The Group Master can forward these commands to
slave devices; however, the Group Master will ignore these commands if the
destination is for itself.

Table 4-9. Boot Code APl Commands

Command Opcode Data Length Description
Reset 0x00 1 This command is used to reset the ZipWire device.
Download Start (Length) 0x53 2 This command is used to begin a new download.

The size of program code (length) is used to validate
the download procedure. The low byte is sent first.

Download Data 0x54 Upto 75 This command transfers the next block of the
program data.

Download End (Checksum) 0x55 1 This command is used to indicate the end of the
download. The download data checksum is passed
in so the 8051 can validate the download contents.
See Section 4.6.11.3.

4.6.11.2 Operational = During operational mode, the Group Master supports one additional API
APl Commands command that allows the Group Master to download its current PRAM contents
to the slave devices. For certain applications, this offloads the host processor from
having to download the slave devices.

Table 4-10. Operational APl Commands

Command Opcode Data Length Description

Download Slave 0x56 1 This command is used to trigger the Group Master to
download its PRAM contents to the slave devices.

4.6.11.3 Program BAM The PRAM checksum uses the following formula to determine the checksum.

Checksum (Byte 1 + Byte 2 + ... + Byte L) + 1: Sum all of the bytes and take the 2’s

complement.

100605C Conexant 4-15
Preliminary Information/Conexant Proprietary and Confidential

4.0 Built-In 8051 Core Detailed Description CN8980

4.6 Program RAM Download

4.6.12 Download Examples

ZipWire2 HDSL2/SDSL Transceiver and Framer

In this example, the application has 8 devices in a group (labeled device 1-8). The

Group

Master (device 1) is connected to the host processor using the host port

RAM interface. The 7 other devices are connected on the Group Talk interface.
Devices 1-4 require the HDSL2 program while devices 5—8 require the HDSL1
program.

The following steps list the sequence to perform the download to the
ZipWire2 devices. Minimal error checking is provided in this example.

Power-on (or reset) all devices.
Host processor downloads HDSL2 program to Group Master.

3. After download is complete, host waits for Group Master to reach

operational mode and validates download.

Host issues the Download Slave API command to the Group Master. The
Group Master then downloads the HDSL2 (current PRAM) code to all of
the slave devices.

Host waits for download to complete and validates download.

. After download is complete, host issues a reset to devices 5-8.

7. Host issues the Download Start, Download Data, and Download End API

commands with the broadcast destination (0x0F) to download the HDSL1
program to devices 5—8. Devices 1—4 will ignore these API commands.
Host validates download.

4-16
Preliminary

Conexant 100605C
Information/Conexant Proprietary and Confidential

5.0 ZipWire2 DSP Detailed
Description

This section provides a detailed description of the DSP block of the ZipWire2
chip set.

5.1 ZipWire2 Clocks

The ZipWire2 DSP block is responsible for generating the DSP, Microprocessor,
AFE, and Framer reference clocks. The ZipWire2 Framer has a DPLL to generate
the PCM receive clock.

Figure 5-1. ZipWire2 Clocks

From Timing & 9
o
Recovery Error X o
o R E:
XTALI SYS_CLK
XTAL Crystal o |
CIork xTaLoY Amplifier PLL | quck =@ﬂa
o | Multtiplier Divider
- RA'\/LCLK"’< |<— UP_CLK_O
DXTAI_ofB [Gloak oo
Divider
REFCLK
o
—¢ To Internal
8051
RPCLK REFCLK
p DPLL Y
DPLL_CLk | (Framer) Programmable
Clock v
= Data Rate TX_RX_CLK
2 —
5 Generator
X
oy
(4]
100605_017
100605C Conexant 51

Preliminary Information/Conexant Proprietary and Confidential

5.0 ZipWire2 DSP Detailed Description

CN8980

5.1 ZipWire2 Clocks

Figure 5-2. Crystal Interface

ZipWire2 HDSL2/SDSL Transceiver and Framer

XTALI (V7)

XOUT (36)
Crystal
Amplifier
Y1 XTALO (W)
._¢|:| —
—_— 33pF T — 33pF

<~

Y1 =22.1184 MHz
(For all data rates)

NOTE(S):

The value of the capacitors may vary, depending on the PCB capacitance.

Table 5-1. ZipWire2 Clocks

100605_057

Clock or Node Frequency Description

XTAL 22.1184 MHz External crystal or clock input

XTALI 22.1184 MHz Crystal input

XTALO 22.1184 MHz Crystal output

XTALO_B 22.1184 MHz Buffered crystal output

CLK_BP 54 MHz External high speed reference clock input

CLK_BP_O 54 MHz High speed reference clock output

BP_PLL Control Pin Selects either internal PLL clock (0) or CLK_BP
pin (1)

SYS_CLK 54 MHz Internal system clock

RAM_CLK 54 MHz Inverted system clock, controls RAM timing

AFE_CLK 27 MHz AFE clock reference

8051_CLK 6-27 MHz Internal pP clock, SYS_CLK divide by 2, 4, 6, or 8

CLK_UP_O 6-27 MHz External pP clock output, SYS_CLK divide by 2, 4,
6,0r8

TX_RX_CLK 144-2320 kbps Data rate clock output

CLK_AUX TBD Programmable clock

5-2

Conexant

100605C

Preliminary Information/Conexant Proprietary and Confidential

6.0 ZipWire2 Framer Detailed
Description

Figure 2-2 provides the detailed block diagram of the DSL Framer block. This
section provides a detailed description of the various modules of the DSL Framer
block.

6.1 Distinguishing Features

» Supports all legacy features of Bt8953A and RS8953B

» Compliant with ETSI RTS/TM-06008 [1]

* 1,2 or 3 pair TI/E1 ETSI and Bellcore standard application

* PCM Interface up to § MHz

» ISDN Primary Rate Access (PRA)

* Custom N x 64 over 1, 2 or 3 pairs

* Asymmetric PCM rate and frame format capability

* Various rates PCM clock recovery (64 kHz up to 8 MHz)

» Low jitter (wander) stuffing generator

» Flexible Stuff Bit ID (SBID) mapping, including majority vote decision
(HDSL2 applications)

» Three programmable PCM and DSL sync detectors (supports grouped and
spread sync word patterns)

* Two programmable PRBS/BER meters to both PCM and HDSL sides

* 12 programmable performance monitoring counters (can be used for CRC,
BPYV, or FEBE error counters)

» 3 programmable CRC generators

* Programmable scrambler/descrambler

» Supports variable time slot size (8, 4, 2, or 1) and therefore variable PCM
custom frequency (N x 64, N x 32, N x 16, and N x 8, respectively)

100605C Conexant 6-1
Preliminary Information/Conexant Proprietary and Confidential

6.0 ZipWire2 Framer Detailed Description CN8980
6.2 Common Functions ZipWire2 HDSL2/SDSL Transceiver and Framer

6.2 Common Functions

6.2.1 DATA FIFO

The DSL Framer contains two DATA FIFOs: TX_FIFO and RX_FIFO. These
FIFOs are used to provide rate buffering between the PCM side data rate and the
DSL side data rate. Each FIFO is capable of storing 512 bits (two E1 frames).

6.3 HDSL Section

6.3.1 General HDSL Functions

6.3.1.1 CRC Generator A generic CRC generator with selectable taps (up to 7th order) is implemented.

Figure 6-1. Generic CRC Generator

RH_CRC_TAP RH_CRC_TAP TH_SCR_TAP
_SEL_6 _SEL_5 _SEL_1
M@T D7 ‘@:1 D6 4‘@47 LI I I <—@<I D1

CRC(n) CRC(n - 1) CRC(n - 6)

100605_018

CRC calculation can be corrupted for debugging purposes. This mode simply
inverts the CRC calculation.

6-2 Conexant 100605C
Preliminary Information/Conexant Proprietary and Confidential

CN8980 6.0 ZipWire2 Framer Detailed Description
ZipWire2 HDSL2/SDSL Transceiver and Framer 6.3 HDSL Section

6.3.1.2 Scrambler/ The Scrambler/Descrambler operation can be bypassed for debugging.
Descrambler

Figure 6-2. Generic Scrambler Generator

D1 b D2 ® D3 = == —»| D22 —» D23
SCR_TAP l SCR_TAP l SCR _TAP l SCR_TAP l SCR_TAP_l
_ _

DATA OUT

DATA IN
—

100605_019

6.3.1.3 Auxiliary = The HDSL Auxiliary Channel (THAUX, RHAUX) provides an alternate source

Channel of HDSL payload. This channel can support any payload size and optionally can
function as an alternate source for the Z-bits or any other selected overhead.
Figure 6-3 illustrates the HDSL Auxiliary Channel Timing.

The Auxiliary Channel interface has two operational modes. In the first mode,

THLOAD and RHMARK signals simply mark high during auxiliary input mode.
The second mode generates gated clock in pins THLOAD and RHMARK during
Auxiliary mode to clock the serial device directly. This mode prevents additional
glue logic in the interface between DSL Framer and the serial device.

Figure 6-3. HDSL Auxiliary Channel Timing

TX Section RX Section
AUX_MODE =0

HBCLK Ei i i % i % i %E HBCLK |E E
THLOAD RHMARK \I_

THAUX | [po |D1| D2 D3| D4 D5] D6| D7] D8 |

THDAT | [po|D1] D2|D3[D4[D5[DE[D7] | RHAUX [po| p1] D2| D3| D4[D5 DE[D7| |

AUX_MODE = 1

THLOAD ffffffff RHMARK %iii%{ii

100605_020

6.3.1.4 RXDSL While working in Multi-Pair configuration, the DSL Framer is capable of
Reference Phase = measuring the receiving DSL phase difference between two pairs. This phase is
Measurement mainly used to determine the delta delay between two HDSL channels in point to
multi-point application (can be also used for debugging or link delay
measurement).

100605C Conexant 6-3
Preliminary Information/Conexant Proprietary and Confidential

6.0 ZipWire2 Framer Detailed Description

CN8980

6.3 HDSL Section

ZipWire2 HDSL2/SDSL Transceiver and Framer

6.3.2 HDSL Receiver Functionality

Figure 6-4 illustrates a detailed block diagram of the HDSL Receiver Section.

Figure 6-4. HDSL Receive Section Block Diagram

RHDAT
(from DSP)
Descrambler RH_PAYLOAD
rp=en (to RX_FIFO)
. >
Y i
HXP i
(from DSP) S?(?\ILC |
I
RX_FIFO_WRITE
DETECTOR ! — —
cT1o i (to RX_FIFO)
i e T i >
| | i
PR 1 Payload RHAUX
: Table -
boo IS P - | _
- R RHMARK
DSLSYNCIN el N P _ Lo\l [-1
- | HXCLK—-»DV
: (from DSP)
I
i
: " | CRC Check
I
! RXHDSL f[~———————--—————-1 ——en
: Frame
: Controller
I
| ~~™ Over-head Bank
| (IND,EOC,HDLC)
: ___________________ =] en
I
I
I
|
i Performance
i Monitoring
[N Lot ittt - en
LEGEND: | RH SYNC
i (to RX SYNC DELAY)
——» DATA Path ettty -
————— - Control Path
100605_021
6-4 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CN8980 6.0 ZipWire2 Framer Detailed Description
ZipWire2 HDSL2/SDSL Transceiver and Framer 6.3 HDSL Section

6.3.2.1 DSLSync The DSL Sync Detector (DSD) acquires and maintains synchronization of the
Detector (DSD) HDSL.
To support the wide variety of frame formats, the DSD is designed in a
flexible way which provides the following capabilities:

» Synchronized to any grouped bit sync pattern up to 16 bits long.

» HDSL frame size (Nominal) can be up to 216 (65536) bits long.

» Stuff'size can be 2, 4, 6, or 8 bits. For application without the necessity for
stuff bits (HDLC applications), the DSD can search for the sync word
without searching in variable frame length, but search for fix location
instead.

NOTE: The default configuration is adequate for most standard applications. For

certain custom applications, this option requires modifying the low-level
DSL Framer code.

Figure 6-5. DSD Synchronization State Machine

Reach Sync

A
\j

Perfect
Match
Partial
Match

Perfect
Match

Partial
Match

Out Of Sync

Partial
Match

Loss Sync

A

\j

100605_022

6.3.2.2 Tip/Ring During 2B1Q mode, Tip/Ring reversal is automatically detected and corrected by
Reversal Detection ~ the DSD.
In HDSL2 applications, the Tip/Ring reversal cannot be detected by DSL
Framer due to the non-symbol alignment nature of the DSP operation. In this
case, the DSP is responsible for detecting and correcting Tip Ring Reversal.

6.3.2.3 RXHDSL TBD
Payload Table

100605C Conexant 6-5
Preliminary Information/Conexant Proprietary and Confidential

6.0 ZipWire2 Framer Detailed Description

CN8980

6.3 HDSL Section

6.3.3 HDSL Transmitter Functionality

Figure 6-6 illustrates a detailed block diagram of the DSL Transmitter section.

Figure 6-6. HDSL TX Section Block Diagram

ZipWire2 HDSL2/SDSL Transceiver and Framer

THAUX
> >
TH_PAYLOAD THDAT
(from TX_FIFO) =z (to DSP)
L I »| Scrambler }——
= - en
o I
- I
Y i
! CRC :
!)
TX_FIFO_READ 1 SN i
(to TX_FIFO) o T|X P e ! eA” :
------------ ayloa
Tgble ——————————————— H e B THLOAD
en | i : ' -
A i i | "’D_'
] i | i T
| | ! | HXCLK
| i I i
| | |
| | |
_______________ 4 I
[i
! I
I
_______________________________ i
TX HDSL Frame
Controller
TX
Over-head Bank
(IND,EOC,HDLC)
———————————————— en
T
oo
TX_DSL_INI | ! TX_HDSL_IND
I
.
TX_PCM_IND
(from TX SYNC DELAY) | STUFFING
________________ generator

LEGEND:

——» DATA Path
————— » Control Path

6.3.3.1 Stuffing
Generator

DSL frame period.
The stuffing generator can be bypassed for nonvariable frame length
application and also as an additional debugging tool.

100605_023

The stuffing generator synchronizes the DSL frame period to the PCM Frame
period by adding 0, 2, 4, 6, or 8 STUFF bits (0,4 in HDSL1 application) to the

6-6

Conexant

Preliminary Information/Conexant Proprietary and Confidential

100605C

CN8980 6.0 ZipWire2 Framer Detailed Description

ZipWire2 HDSL2/SDSL Transceiver and Framer 6.4 PCM Section

6.4 PCM Section

The PCM section (receiver and transmitter) is composed of two major blocks, the
PCM mapper and the Layer 3 Framer.

The PCM mapper functions as a formatter which maps/extracts PCM payload
data into/from the HDSL channel through the FIFO. In addition, the mapper can
override the data with data bank or generate a PRBS sequence.

The Layer 3 Framer synchronizes to PCM Frame or Multi-Frame,
extracts/inserts Overhead data from/into the PCM Frame, and checks for any
block errors (such as CRC).

6.4.1 PCM Interface

On the PCM interface, the DSL Framer can interface to standard E1, T1, or any
PCM custom N x 64 kHz frame format.

6.4.2 General PCM Functions

6.4.2.1 CRC Generator = The PCM section contains two generic CRC generators which are functionally

identical to the one located on the DSL side (see section Section 6.3.1.1 for more
details).

The PCM CRC calculation can be corrupted for debugging purposes. This
mode simply inverts the CRC calculation. In addition, the CRC generator can be
bypassed or recalculate.

Any CRC computation format can be generated. CRC computation can be
disabled/enabled. There is the capability to replace any bit in the frame with either
0 or 1 for CRC computation purposes. This capability allows supporting any CRC
operation method.

6.4.2.2 Insert/Drop An alternate PCM source is fed into the PCM formatter, using TPINSEN,
TPINSDAT, and RPDROP pins (see Figure 6-7).

Figure 6-7. Insert/Drop Timing Diagram

TX PCM Section RX PCM Section
TROLK J_I_I_IZH_I_LI_U_LI_LI_LI_U@—I_I_\ RPCLK ﬂwwm
TPINSEN Y L meoror Y N
TPINSDAT | [Do|D1]D2|D3[D4[D5|D6[D7| | RPDAT | [Do| D1] D2 D3| D4| D5[D6[D7| |
TX PCM Data | [po| D1] D2[D3] D4 D5[D6| D7] |
00605 24
100605C Conexant 6-7

Preliminary Information/Conexant Proprietary and Confidential

6.0 ZipWire2 Framer Detailed Description CN8980

6.4 PCM Section

6.4.2.3 Overhead
Handling

6.4.2.4 E1 Grooming

6.4.2.5 MF Phase
Measurement

6.4.3 PCM Receiver

ZipWire2 HDSL2/SDSL Transceiver and Framer

The PCM transmitter and PCM receiver can handle up to 24 OverHead (OH)
bytes. These OHs can function as Sa bits, E bits, and A bits for E1 applications.
They can be used to generate any in-band management.

NOTE: This option requires modifying the low-level DSL Framer code.

To support the E1 P2MP application, it is necessary to groom Channel Associated
Signaling (CAS) from different sites. Each remote site has a different PCM Frame
sync that needs aligning in the central site.

During E1 Point-to-Multi-Point application, PCM Multi-Frame phase
measurement between TPMFSYNC and RPMFSYNC pins with respect to
internal transmit MF Sync (MFSYNC) is necessary at the remote site to
compensate for misalignment between different remote sites. This phase then can
be used to internally align the HDSL transmits frame to the PCM Frame
boundary in each site. It can provide the value of each site to the central office
and to align the receive channel signaling to the receive E1 MF.

Figure 6-8 illustrates a detailed block diagram of the PCM Receiver section. The
major tasks of the PCM Receiver are:

1. Generates RX PCM time base aligned with the HDSL reference (WL delay
apart).
2. Assembles ongoing PCM Frame using flexible RX PCM Mapper Table.

Major tasks of this table are:

a. Assembles RX PCM Frame from selectable sources: HDSL payload,
PRBS sequence, DATA BANK 1, 2 or 3, Signaling table (Grooming
Mode), and RPEXTDAT input pin.

b. Enables BER meter per time slots basis.

¢. Asserts RPDROP pin to signify specific TS’ in RPDAT output.

d. Inserts external PCM data (in RPEXTDAT input) to the receive PCM
Frame. Used in Multi-Pair configuration.

3. Generates receive user interface SYNC signals such as RPMFSYNC and
PREFSYNC (Multi-Pair configuration PCM time-base sync).
Synchronizes to any Layer 3 Frame/MF.

Checks CRC (Selectable) and computes CRC on the final ongoing frame.
Extracts overhead bits.

Provides capability to override each overhead bit by the MPU.

NS n ok

6-8

Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CNg980

6.0 ZipWire2 Framer Detailed Description

ZipWire2 HDSL2/SDSL Transceiver and Framer 6.4 PCM Section
Figure 6-8. PCM Receiver Block Diagram
RP_PAYLOAD
(from RX_FIFO) -
RPEXTDAT PRA_EN
> -
Signalling L;D>
Y T Table %
! X Extracted OH Write OH
g1 - : - DBANK - Register Register
Meter : 12,3 Bank Bank -
| - - -
L BP - 1]_8 bits 1|_8 bits
! PRBS
i - S
RX_FIFO_READ I S
(to RX_FIFO) A ! L ™ ™ x
______ Mapper Table RPDROP i |
- l PCM 124 1 24
I o G Multiframe ! !
reset SYNC i i .
A Detector | 1 e
; | | | |
| : Y | |
i N ! CRC
PRSYNC reset | Frame | I |
——————————————— T Counter | F-- i ————————m————————d_ 1| Compute
Bx i : PCM !
! MF L 1 | Multiframe Pavload |
- - yloa
i Counter i | | Controller Control p----2 L] CRC
Time Base i | Regist Check
: ! egister
I
I
i o - 1 Performance
: i A Monitoring
[|
I I
LEGEND: [|
— » DATAPath | e ___MF Syne
————— » Control Path o
e———e (Configuration Register
SYNC_EN
100605_025
100605C Conexant 6-9

Preliminary Information/Conexant Proprietary and Confidential

6.0 ZipWire2 Framer Detailed Description

CN8980

6.4 PCM Section

6.4.4 PCM Transmitter

Figure 6-9 illustrates a detailed block diagram of the PCM Transmitter section.
The major tasks of the PCM Transmitter are:

1.

Sl B A T ol o

Frame/Multi-Frame sync.

Extracts overhead bits.

Figure 6-9. PCM Transmitter Block Diagram

ZipWire2 HDSL2/SDSL Transceiver and Framer

Generates Tx PCM time base aligned with the incoming

Maps PCM Frame to the TX_FIFO using TX PCM Mapper Table.
Enables BER meter per time slots basis.
Inserts alternate PCM channel, using TPINSDAT, TPINSEN pins.
Synchronizes to any Layer 3 Frame/MF.
Checks CRC (Selectable) and computes CRC on the final ongoing frame.

Provides capability to override each overhead bit by the MPU.

TP_DATA
Extracted OH Write OH PRA_EN
Register Register
Bank Bank -
1] 8 bits 1] _8 bits
| =z = -
‘ > - § —a| X<
PCM o~ - -]
Multiframe | :
-~ TP_PRBS ||
SYNC 124 124 i TP_PAYLOAD
Detector i ! i z | (O TXFIFO)
T ! | ! Y i cp——™
| : | PR I : <
| | | i
1 ! | i TP BER L | Previous
S 5 L
: : CRC Meter <_: ™ ots [
| PcMObo -}~ -] Compute i
i | Multiframe ! i
: Controller T : ! -
ayloa - |
| L--»| Control |-----—-- (ShRCk !
: 4 Register = L
TPINSDAT | ,
> 1 1 TX_FIFO_WRITE
l | (to TX_FIFO)
I [TXPCM [7 >
! |
! | Mapper
|
: i 1) TPINSEN
> | —-<]
reset Frame
R, s e e ey = I | —
PCM SYNC IN —: Counter | reset
______ » :
| MFSYNC
P-I(-DXM r CO’\L/JIEteI' I >
SYNC_EN Time | TPREF Interrupt
Base | = (to TX SYNC DELAY)
L —] €l L -
Counter
LEGEND:
—» DATA Path
————— » Control Path
e———e (Configuration Register

6.4.4.1 PCM Sync

Detector

100605_026

The Sync Detector is able to synchronize to any sync pattern, grouped or spread,
up to 16 bits long. This capability allows the DSL Framer to synchronize to E1,

T1, or any other frame. This requires modifying the low-level DSL Framer code.

6-10

Conexant
Preliminary Information/Conexant Proprietary and Confidential

100605C

CN8980 6.0 ZipWire2 Framer Detailed Description
ZipWire2 HDSL2/SDSL Transceiver and Framer 6.5 Test and Diagnostics

6.5 Test and Diagnostics

6.5.1 Performance Monitoring

The DSL Framer supports up to 12 performance monitoring counters, divided
equally to three sections.

Each performance-monitoring counter can function as a CRC error counter
for the Sever Error Second (SES) indicator, Far End Block Error (FEBE) counter,
Bipolar Violation (BPV) error counter, or any other necessary performance
indicator counter.

» Receive HDSL: Supports up to four performance monitoring counters.
* Receive PCM: Supports up to four performance monitoring counters.
* Transmit PCM: Supports up to four performance monitoring counters.

6.5.2 PRBS and BER Meter

The DSL Framer has two PRBS/BER meter modules supporting BER
measurement towards both the HDSL and PCM side. TP_PRBS and RP_BER
function as a BER meter towards the HDSL side, and RP_PRBS and TP_BER
function as a BER meter towards the PCM side.

The PRBS sequence can override TPDAT and RPDAT per time slot basis, and
achieve any framed or unframed test pattern examination. The PRBS pattern is
programmable and selected for both RP_BER and TP_BER by PRBS_TAP_[2:0]
registers, indicate up to 23"order PRBS (Tap [23:0]):

Figure 6-10. Generic PRBS Generator

PRBS
DATA OUT
- D1 I: D2 I: D3 T-..-—» D22 [+ —| D23
. TAP_22 TAP_23
—

100605_027

Example:
For a PRBS pattern of 215 -1, the polynomial is xP x4+,
For a PRBS pattern of 223 _ 1, the polynomial is x4 x84,
Fora QRSS 220 — 1 pattern (polynomial — 20+ x17+ 1), 14-bit 0
suppression is implemented.
The TP_BER and RP_BER sequence can be inverted.

100605C Conexant 6-11
Preliminary Information/Conexant Proprietary and Confidential

6.0 ZipWire2 Framer Detailed Description CN8980
6.5 Test and Diagnostics ZipWire2 HDSL2/SDSL Transceiver and Framer

The constant value per time slot basis can override TSER and RSER instead of
PRBS. The MPU configures BER_SCALE to specify the test measurement
interval from a range of 221231 pit length.

The BER Measurement Timing is shown in Figure 6-11.

Figure 6-11. PRBS and BER Meter Timing

|
I
BER RST |—| !

|
|
|
|
BER METER Qualification Phase |X Measurement Phase |X BER Result ready
| I
BER SYNC : :
| | |
|
BER INTR 1 I_l |_|

100605_028

6-12 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

7.0 Hardware Interfaces

7.1 ZipWire2 Transceiver/Framer to AFE
Interface

Figure 7-1 illustrates the ZipWire2 Transceiver/Framer to AFE interface. The two
devices must be connected as shown.

Figure 7-1. ZipWire2 Transceiver/Framer to AFE Interface

ser1_tx
2 1 39
ser2_tx
2 1 40
afe_clk
? — | 21
. up_w_da > o7
? up_r_d | o6
ZipWire2 » serra =125 Zipwire2
Transceiver , afe_cs ~28 AFE
Framer afe_sync
2 > 29
afe_reset
? »| 11
1
7 < seri_rcv -
ser2_rcv
? - 23
3
7 |l ser3_rcv o
100605_029
100605C Conexant 7-1

Preliminary Information/Conexant Proprietary and Confidential

7.0 Hardware Interfaces

CN8980

7.2 Transmission Line Interface

7.2 Transmission Line Interface

ZipWire2 HDSL2/SDSL Transceiver and Framer

Figure 7-2 illustrates a block diagram of the DSL transmission line interface. The
DSL interface consists of the continuous time filter, line drive feedback resistors,
impedance matching resistors, compromise hybrid, transformer, and surge
protection. All signals are differential pairs. Only NPO-type capacitors should be
used in the DSL transmission line interface except for the surge protection blocks.
The NPO capacitors are selected because of their high linearity characteristics.
All capacitors should be 5% tolerant while the resistors should be 1% tolerant.

Figure 7-2. DSL Transmission Line Interface

Continuous | | Line Driver
Time Filter Gain Resistors
L . Circuit Side Line Side
Digital | Matching
Fiter I Resistors Surgg XFRMR Surgg -
Protection Protection
DAC Line Driver
Hybrid 1 Hybrid 2
ZipWire2
AFE
AAF 1
<} MUX AAF 2
A-D Converter
RX AAF
AAF = Anti-Alias Filter
100605_062
7-2 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CN8980 7.0 Hardware Interfaces
ZipWire2 HDSL2/SDSL Transceiver and Framer 7.2 Transmission Line Interface

7.2.1 Continuous Time Filter and Line Driver Control

Figure 7-3 illustrates the external Continuous Time Filter and Line Driver Control
connections. The external Continuous Timer Filter filters out clock images
created from the switched-capacitor filters. The external line driver gain control
resistors set the line driver gain.

Figure 7-3. Continuous Time Filter and Line Driver Control

12.83pF
||
l [l
A%
8KQ
RCDRVP (65) LDIP (64)
4 I LDOP (55)
2KQ 2KQ
51.3 pF Line Driver to line
interface
RCDRVN (66) 2KQ 2KQ
e — —
LDIN (63) LDON (54)
||
[
12.83pF
100605_06:
100605C Conexant 7-3

Preliminary Information/Conexant Proprietary and Confidential

7.0 Hardware Interfaces

CN8980

7.2 Transmission Line Interface

ZipWire2 HDSL2/SDSL Transceiver and Framer

7.2.2 Compromise Hybrid, Matching Resistors, and Transformer

Figure 7-4. Hybrid Topology

Figure 7-4 illustrates the hybrid topology.

Preliminary Information/Conexant Proprietary and Confidential

| Antialiasing Filter ! |
| 221 Q |
; I
VXP (3) : l MWy [
| I
L 380PF 10 :
! T o Line
X I
VXN (4) | /\/\/\/ : Transformer
I
2490 5o /
A Surge -
LDOP (54) /\/\/\/ Protection —
\ g Line
Matching Surge
Resistors 1uF Protection
2.49Q /
A A Surge
LDON (55) /\/\/\/ Protection S d Pri —
econdary rimary
: Compromise Hybrid :
I
. :
I _ I
mTT T T . ! '_lT !
I Antialiasing Filter | | R11 ; |
|)
VHNP (5 0r 7) l AN : — —A\N . |
| !
1 220 pF | | R5 |
| 1 0Q | I R9 g R1 i
VHnN (6 or 8) /\/\/\/ , | |
| ' [| C9 C3 I
______________ ! I E E :
| c10 C4 !
I q I
! R1o§ § R2 i
| R6 i% |
I R4 I
L * \/ ¢ I
I . l I
| |
| R12-§ e
| CZT cs| |
! . |
! [
100605_058
7-4 Conexant 100605C

CNg980

7.0 Hardware Interfaces

ZipWire2 HDSL2/SDSL Transceiver and Framer 7.2 Transmission Line Interface

7.2.2.1 Compromise
Hybrid

7.2.2.2 Impedance
Matching Resistors

7.2.2.3 Transformer

7.2.2.4 Anti-Alias Filters

The purpose of the compromise hybrid is to model the impedance of the
transmission line. This model generates an approximation of the transmitted
signal’s echo. The echo replica is then subtracted from the signal on the line
transformer to generate a first-order approximation of the received signal.
Although the CN8980 contains a digital Echo Canceller (EC), the hybrid is
needed to reduce the signal-level input to the Analog-to-Digital Converter (ADC).
This eliminates ADC overflow on short loops and increases the resolution of the
digitized received signal for better digital signal processing performance.

The CN8980 includes two hybrid inputs to accommodate a wider range of
loop characteristics and data rates. The CN8980 only uses one hybrid topology
but the hybrid component values change to match the application requirements.
The hybrid topology only requires passive components.

In a single data rate application, hybrid 1 is designed for flat loops while
hybrid 2 is designed for bridge-tapped loops. In a multi-rate application, hybrid 1
is designed for higher data rates while hybrid 2 is designed for lower data rates.
During the bit pump startup, the software will examine both hybrids to determine
which hybrid provides the best echo cancellation. The CN8980 can also operate
with only hybrid 1 present; however, this may limit performance on certain loops.
The Analog Front End API (Section 17.4.5) command sets the number of hybrids
present in the system.

In the hybrid section, two capacitors are placed in parallel to achieve
nonstandard capacitor values.

Impedance matching resistors (2.49 Q) are placed in the transmit path so that the
output impedance of the line interface more closely matches the impedance of the
transmission line and load. This maximizes the power transferred to the receiver
on the other end of the line. The load is assumed to be 135 Q.

The line transformer provides DC isolation from the transmission line by creating
a high-pass filter. The winding ratio of the transformer must be 5.0:1 (line
side:circuit side) to generate the appropriate voltage level on the line. The primary
inductance (L) of the transformer (line side) is a very critical parameter. If the
inductance is too high, the cutoff frequency of the filter will be too low and the
CN8980 Echo Canceller and Equalizer will not be able to cancel out the low
frequency components of the echo and Inter-Symbol Interference (ISI). If L is too
low, part of the information in the signal will be filtered out, thereby decreasing
the Signal-to-Noise (SNR) ratio. In addition, the line transformer must meet
certain return loss requirements to maximize system performance.

Anti-aliasing filters are needed to filter out high frequencies that would be aliased
back into the passband as noise. These filters are made of all passive components.
The cutoff frequency (fc) is designed to be as low as possible to achieve maximum
attenuation of aliasing frequencies without filtering out the desired signal.

7.2.3 Surge Protection

TBD

100605C

Conexant 7-5

Preliminary Information/Conexant Proprietary and Confidential

7.0 Hardware Interfaces CN8980
7.3 Voltage Reference and Compensation Circuitry ZipWire2 HDSL2/SDSL Transceiver and Framer

7.3 Voltage Reference and Compensation
Circuitry

Compensation capacitors must be connected between all of the CN8980 voltage
reference pins and analog ground. The voltage reference signals, their associated
pin numbers, and the recommended compensation capacitor values are listed in

Table 7-1.
Table 7-1. ZipWire2 AFE Compensation Capacitor Values
Signal Name Pin Number Value
VRNTX 69 0.1 uF
VRPTX 70 0.1 uF
VCMI 73 0.1 uF
VCMO 74 0.1 uF
VBGN 7 0.1 uF
VBGP 78 0.1 uF
VRNRX 79 0.1 uF
VRPRX 80 0.1 uF

In addition to the compensation capacitors, external passive components are
needed to set the bias current used in the CN8980. This network is shown in
Figure 7-5. The recommended value of the resistor is given in Table 7-2.

Figure 7-5. ZipWire2 AFE Bias Current Network

Rrbias
RBIAS (71)
Cbias J—
Cavbias
AVBIAS (72) ”
v
AGND

100605_064

Table 7-2. ZipWire2 AFE Bias Current Network Values

Signal Name Value
Rrbias 10.0 kQ
Cbias 0.1 yF
Cavbias 0.1 yF
7-6 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CN&980 7.0 Hardware Interfaces

ZipWire2 HDSL2/SDSL Transceiver and Framer 7.4 Framer Bypass Interface (ZipWire2 Transceiver DSL Interface)

7.4 Framer Bypass Interface (ZipWire2
Transceiver DSL Interface)

Figure 7-6 illustrates the ZipWire2 transceiver interface timing diagrams. There
are four signals in the ZipWire2 Transceiver DSL interface: HXCLK, HXP,
TXDAT, and RXDAT.

The ZipWire2 transceiver only operates as an interface master. The ZipWire2
TxDAT and RxDAT cannot be slaved from an external clock. The HXCLK and
HXP are outputs. The HXCLK operates at the desired data rate while the HXP
operates at the effective symbol rate.

The HXP provides the phase alignment to mark the least significant bit of the
serial data stream. The HXP is equivalent to the QCLK symbol in the previous
ZipWirel products.

The TXDAT (input) and RXDAT (output) correspond to the serial data. These
figures illustrate positive edge transitions; negative edge timing can selected
using the API command (command to be determined).

NOTE: The 3-bits per symbol suppresses the number of clock pulses.

Figure 7-6. ZipWire2 Transceiver DSL Interface

2-Bits per Symbol

xclk _brlvlvlvlvlvlvfvlvl
e N LT LT LI LTS

TXDAT [po | D1 [po | D1 [po | D1 [Do | D1 [Do | D1
RXDAT

3-Bits per Symbol

HXCLK AN RN LORG
//, I //, I ’

HXP 4 B L
h [l — | Y

TXDAT
RXDAT lpo [p1 b2 |po [p1 b2 Do | Df

4-Bits per Symbol

HXCLK [T R R
[[A [

HXP ¢ ¢ [B4 [
e e

TXDAT
RXDAT |po [D1 |2 [D3 |Do [D1 [D2 [D3 |Do | b1 D2|Ds |

100605_031

100605C Conexant 7-7
Preliminary Information/Conexant Proprietary and Confidential

7.0 Hardware Interfaces

CN8980

7.5 Test and Diagnostic Interface (JTAG) ZipWire2 HDSL2/SDSL Transceiver and Framer

The interface can operate in the following modes as controlled by the API
command DSL_Frame_Structure as explained in Section 17.3.8.

Mode Data Bits Line Code
1-Bit Uncoded 1 2 PAM (startup only)
1-Bit Trellis Coded 1 4 PAM (not supported)
2-Bit Uncoded 2 4 PAM (2B1Q)
2-Bit Trellis Coded 2 8 PAM
3-Bit Uncoded 3 8 PAM
3-Bit Trellis Coded 3 16 PAM
4-Bit Uncoded 4 16 PAM

Regardless of being in Trellis Coded or Uncoded mode, the DSL Interface
remains the same, i.e., 3-bit Trellis Coded and 3-Bit Uncoded have the same
timing to the external interface. The Trellis Coded modes will internally generate
a coded symbol requiring the one larger PAM line code.

7.5 Test and Diagnostic Interface (JTAG)

The Test and Diagnostic Interface comprises a test access port and two Serial Test
Ports (STP). The test access port conforms to IEEE Std. 1149.1-1990 (IEEE
Standard Test Access Port and Boundary Scan Architecture). Also referred to as
Joint Test Action Group (JTAG), this interface provides direct serial access to
each of the transceiver’s I/O pins. This capability can be used during an in-circuit
board test to increase the testability and reduce the cost of the in-circuit test
process.

The serial test ports can be viewed as a real-time virtual probe for looking at
the transceiver’s internal signals. A majority of the receiver’s signal path is
accessible through these outputs.

7-8

Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

8.0 Pin Descriptions

The ZipWire2 solution is available in a two- or three-device chip set. The
two-device chip set consists of a ZipWire2 Transceiver/Framer and a ZipWire2
AFE/Line Driver. The three-device chip set consists of a ZipWire2 Transceiver, a
ZipWire2 Framer, and a ZipWire2 AFE/Line Driver.

8.1 ZipWire2 Pin Assignments

This section provides the pin assignments for the ZipWire2 devices.

100605C

Conexant 8-1
Preliminary Information/Conexant Proprietary and Confidential

8.0 Pin Descriptions

CN8980

8.1 ZipWire2 Pin Assignments

8.1.1 ZipWire2 Transceiver/Framer Pin Assignments

ZipWire2 HDSL2/SDSL Transceiver and Framer

The ZipWire2 Transceiver/Framer is packaged in a 27 X 27 mm Ball Grid Array

(BGA) and contains 314 balls (see Figure 8-1).

Figure 8-1. ZipWire2 Transceiver/Framer Pin Assignments

i i 2 e s G e GG A B B B GG B MG B G R GG G GR B ER LB Rk B kA G Bl E R Kt

N‘v-‘(s":gge'jfjQf\‘_:9°’|°°"\"D"ﬂ‘"““"‘N“‘"‘,@‘“""“”,N"‘ﬁé"‘O‘Eﬂgﬂzz;888’352,&‘555&5‘-‘_{2393:92“’583588585838868&&82&{8

228 ocbooorasrasaoedsraarantae EEEns 2200z ERAN BaxcaTL uaTeaedig 18056085

8% gggggggéggggggggg>>>>>>>>§§é\55?%ggélgéggéggghE‘A‘NgﬁNN&D'n'8888888EEEE%EE%E'E‘EEEE%
2 |WR_N 3 =2 Y4_SPARE BALL | va
TH3 |RD_N o eo 5_SPARE_BALL | ws
_Hi |CS_N ~INF_EXT [Twia
i |ALE CLK_MUX_O [Y12
—2_|AD7 CLK_BP! Wiz
—3_|AD6 CLK_BP [viz
K2 |AD5 BP_PLL [Vi3
ﬁﬁgg 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 REFCLK/%&[g% RN
F4|AD2 XTALO ["we
E3|AD1 XTALl [v7—~
=, -[e/e/e/ee[eeeeeeeeeeeeeee = [
| TESTMONS [cs
T [T - 900000000000 00000009 : TESTMONT [og-
N3_|MB_AD1 TESTMON6 [cs
N2|MB_AD2 TESTMON5 [¢7-
=i |\Via-Abs 1900000000000 00 0000 PO0P V9. TESTMONA FCo-
P2|MB_AD5 TESMON2 |"cs_
£ Jieace 190000 eeeeeeeeeeeee oo LEStoNT s
L jejejeieele oojoe. i
. |eeeieele OODCE..
o 0000 eeeoe: i f
B11_|MB_ADR9 ggfﬁ’ggt R
DI [MB_ADR10 000 @ 0000 oo 000 - SCAN MODE [
i . eeeee [eeeeeee [eeee: e b
g < eeeee [eeeeeee [eeee: R
. _EN [wr
e, < |eeeee |oeeeeee (eeee T
pt_|MB HPINT [Ti8
T tcs™ “ 9000 e 000000 000" He-DATe [
U2|MB_N5 HP_DAT5 | Yig
Tl ooeee] eoeeeeee [eeee. o b
T4|MB_OE HP_DAT2 |Uis
o $ 0000 0000000 00 060- e-oy fa
A4_ | TPINSEN P [W20
86" | RPDPLLCLK G I I X) 000 : HP_ADR9 [uis
“A8_|RPDROP HP_ADR8 [Vis
TB8_|RPEXTDAT & [Ris
. 9006 ®000" TRE
K| [20
LR e |9]0/0/0/0000000000000000: e
L ' 0000000 oee oo o0 o0000 00 (P ADRD
i v eeeeeceeeeeeeeeeeeee il
o [T 000000000 e0e0 0000000 SERT v
¥13_|RST_N-TSUNAMI AFE_SYNC |[Vis
X [moiA 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 ATE CS %
“ws_|TRST_TSUN UP_R D [Wi6
vs_|TDO_A SER_IRQ [Y14
T |ToR 28980 SER3_RCV [Wi7
2 ENB 1 ZipWire2 Transceiver/Framer SERaRSY B
A20_|GND_2 ACLK_DSP | vi7
T < senanernns nonengs v eenEREs IS EREES 00 TOSE SIREIIERII RO U R EERBER RN e [

140101 0 S T T T N T T €6 € 2 O O O O O O SN N Y YO0 00000 5055060, 0, 60,60, 60,00, 0,0 P I I N N N s S <

DDDDDDDDDDDDODDDODDDODDDODDDDDDDDDDDDDDDDDDDDDDODDDODDDODDDDDDDDDDDDDDDDDDDD%%({)‘

ZZ22222222222222222Z222Z222Z2222222222Z222Z222Z2222222222222222222Z2222Z2222Z22Z2Z24q0)

GRlcletotstolotetolstototetolotototetototolotetototolstetolototstetotetotstetotetostetotetotstetotetotstolotetolototototototototototo oo tetoto otooh 3

e e T S e SRR e

700605_060
8-2 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CNg980

8.0 Pin Descriptions

ZipWire2 HDSL2/SDSL Transceiver and Framer

8.1.2 ZipWire2 Transceiver Pin Assignments

8.1 ZipWire2 Pin Assignments

The ZipWire2 Transceiver is packaged in a 15 x 15 mm Chip-Array Ball Grid
Array (CABGA) (see Figure 8-2).

Figure 8-2. ZipWire2 Transceiver Pin Assignments

HEEE

T O NC OO EN©GD T ®N D ®NODTONEOOFE LWS 8- WDYON-ONETO®N O OO

iidc558898880.98;5;5888;5;85BFFEFER0 JHEERCEEREERERRFALE

QSBBB8922929229>>>>>>>>>55$5555§EE5555555555”““””’55”’\"’\

& > > 3> 3> > E E = E E E E =4 E oo0o % %
Mo2 ? DSP_RST |R10
Lo1 ASToUT | BN
K03 ok P o o
Lo3 737 A |.c16
co2 P36 WA |Bi6
cot 535 PRAM |.B15
E04 P34_GPIO_SYN | A16
Dot s T Lcis
Fo4 i 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 s e |14
Fo3 Pa1_Txpo |C14
= . [00000000000000000 n I
G03 P17_GPIO_DAT | A15
b - 00000000000000000 Pro.opo o fa1e
Got P15 INT3 | B3
R - 00000000000000000 ez (2
G02 WE P13_TXD1 | C12
= ' 00000000000000000 i [
D09 1| mB_ADDRO P11_T2EX | B12
] - 000@ 0000 o o
A07_| \B_ADDR2 P PSEN |-F16
] - 000® 0000 o
BO6 | mB_ADDR4 P2_ADR15 | G14
] - 0000 0000 o
C05 | MB_ADDR6 28982 P2_ADR13 |-E16
ke | o00® 0000 o
B0S | mB_ADDRS P2_ADR11 |-D16
b . |000® 0000 o [
A03 | MB_ADDR10 p2_ADR9 |E14
] | 00@@ VR 9@@@ o o
C04 | MB_ADDR12 po_AD7 |-G18
] . l000® 0000 s
€03 | MB_ADDR14 Po_ADs | G17
] | 000e® 0000 o s
D11 _| MB_ADDR16 po_aD3 |-H16
mEs | o00® 0000 o s
403 | Ve e Po_ADT |LHIZ
= - 00000000000000000 o
K04 | wmB_Ccs7 ExTgost |11
= b " 00000000000000000 o
E02 | Vg INT2 up_R.D |RI2
= ' 00000000000000000 s o
105 | BSp_TRST ser2_Tx | P09
s | o 11 00000000000000000 sere oy [us
Uo6 1 1po SER1_TX |10
RO6 | Tms SER1_Rcv Y16
RO9 1 gp_pLL SER_IRQ 112
T07) cLk_Aux AFE_SYNC | Y12
RO8 | cik BP_IN AFE_RST Y13
109 1 cik BP.O AFE_CS P10
U0 _{ cik_mux_o AFE_CLK P11
Vot 1§ xraui AP_wE |-K16
T02 | xTALO HP_OE |15

crupswer®o -

e N L L N L Y R A T N

222000 cdoodaogddodaogddogdagddogaggggggg 9GS 00606060606 06064615

F 00 Z2Z222Z222zZ22Z22Z2zZ2zZzzZzzZZzZzZzzZzzZZZzZzZzZZzzZzZZZZaiooooooooojoaoooooooaoola

X>>000000000C0C0CO0LOLU0U0OLVOLOLVOLOLOOOUOU0DOVDODOVDOIIIIIIIIIIIIIIIIIIIINCT

" EEREEEEEEER

c|a| k| | ol E| 5| 8| ¥ F|F| 2| =|o|o|alal ol ol | k| & 3| | | x| F| S| 5| F| Bl 3| 5| 3 5| 5| zZ| 5| =l x| F| 3| 2 Z| x| x| Fl & x| x| =

100605_126

100605C

Conexant
Preliminary Information/Conexant Proprietary and Confidential

8.0 Pin Descriptions

CN8980

8.1 ZipWire2 Pin Assignments

8.1.3 ZipWire2 Framer Pin Assignments

The ZipWire2 Framer is packaged

Figure 8-3. ZipWire2 Framer Pin Assignments

ZipWire2 HDSL2/SDSL Transceiver and Framer

ina 9 x 9 mm CABGA (see Figure 8-3).

A R s R R R R R = R R R e R
Z 0O N © IO < O N - O 0N O I S 0O AN - O W =
5000000005568 656b65666002702
> 000 CEE8FEEFEEEEREREL 1
>>>>>>>>00000000n0ad?
FEEEEEEEEEFRF
G4 | psLsyNeI 1 5 s 4 5 & 7 8 9 REFCLK | G2
__H41 psLsynco HXCLK Y9
__F5 | RHAUX A RXDAT |H9
—J5 | RHMARK Hxp | &7 __
— 61 THAUX B TXDAT |H8
— J7 I THLOAD FR_ADO | B9
C1| rpoLK ¢ FR_AD1 | C8
_ Bt pexTOLK FR_AD2 |E8
_ D2 rppPLLOLK D FR_AD3 |D9
_ Bl RpDAT FR_AD4 |C9
A1] RPEXTDAT E FR_AD5 | E6
__ B2 | RpMFSYNC FR_AD6 |E7
C3 | RPDROP F FR_AD7 |F7
__C2 1 pReFsYNC FRALE | F6
— B2 1poLK G FRCS | &9
__F111ppaT FROE |F&
__ D3| 1PMFSYNC H FRWR | &8
__G1| tpiNSDAT FRORQ | D7
— B4 1 TPINSEN J Tok 8
__H5 | FRRST FRTRST | H2
28983 DSL FRAMER
3 O OC «~ M |- @
2 5822238
e
655666666 HEEEEEHEERE
B S 38 8 2T LB OB R8PS
100605_125
8-4 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CN8980
ZipWire2 HDSL2/SDSL Transceiver and Framer

8.0 Pin Descriptions

8.1 ZipWire2 Pin Assignments

8.1.4 ZipWire2 AFE Pin Assignments

The ZipWire2 AFE/Line Driver is packaged in an 80-pin Thin Quad Flat Pack
(TQFP). In addition, the bottom of the device contains a GND pad that should be
soldered to the board.

Figure 8-4. ZipWire2 AFE Pin Diagram

2, ~ze 53
x X o X X ~ A [

i oo <9 oxTx
E266<2z2502bz<20002hbb
Crrono<0C00>n0arrxr<0CO0O0OnoWwuw
> > >> >4« >>< 0 >>>< oo dadkF -

O OO O~ © D T OAN m O 3 0 I © IV F M N =
O NNNNNRNRNRKNRNRKO®G S © © © O © © ©
VAA_1 — 1 60 |— AGND_11
AGND_1 —— 2 59 — VAA_6
VXP — 3 58 |— TEST_CNI
VXN — 4 57 [—1 VAAS
VHIP — 5 56 |—— AGND_10
VHIN —1 & 55 |— LDOP
VH2P —— 7 54 [— LDON
VH2N — s 53 [—3 AGND_9
VAA2 T o9 52 [/ VAA_4
AGND_2 — 10 28981 51 [AGND_8
AFE RST — 11 ZipWire2 AFE 50 —1 VAA3
TEST_RX6 — 12 49 |1 AGND_7
TEST_RX5 —— 13 48 |—— AGND_6
TEST_RX4 — 14 47 [— TEST_VESD
TEST_RX3 —— 15 46 |— TEST_FU
TEST_RX2 —— 16 45 |—— TEST_TX4
TEST_RX1 —— 17 44 |—3 TEST_TX3
TEST_RX0 ——] 18 43 |—3 TEST_TX2
TEST_CTRL1 —— 19 42 |— TEST_TX1
TEST_CTRLO —— 20 41 | TEST_TX0
- AN O T IO ONN 0 0O O - A M T 1 O NN 0 O O
AN AU VAAANDDOODO®O OO T
¥ >>>00<CNO0O0®YT 0oL ZHF-WmmxXX
2 1 02
C‘)IE;)&)&)Q—:ICC:D\$\§>%%>%2|L}L)§):It|:|
tEeg sty 22 23J-8§5
ETITTTTIR) g Y << <@zQrFroo
0 non < O
7]
100605_059
100605C Conexant 8-5

Preliminary Information/Conexant Proprietary and Confidential

8.0 Pin Descriptions CN8980

8.2 ZipWire2 Signal Descriptions ZipWire2 HDSL2/SDSL Transceiver and Framer

8.2 ZipWire2 Signal Descriptions

This section provides the signal descriptions for both the ZipWire2
Transceiver/Framer and ZipWire2 AFE/Line Drive devices.

8.2.1 ZipWire2 Transceiver/Framer Signal Descriptions

Table 8-1 defines the ZipWire2 Transceiver/Framer Signal (pin) descriptions.

Table 8-1. ZipWire2 Transceiver/Framer Signal Definitions (1 of 9)

Signal Name 1/0 | PU/PD() Description
Power and Ground
VDD DSP Core Voltage | — — Dedicated supply pins powering the DSP core. Must be connected to

(VCORE) +2.5V.

VDDO I/0 Voltage — — Dedicated supply pins powering the 1/0. Must be connected to +3.3 V.
(VI0)
VGNN 5V ESD Protection | — — Dedicated supply pins used to bias input protection diodes. If interfacing

(VESD) to other 5 V powered devices, connect VGNN to +5 V. Otherwise connect
VGNN to +3.3 V.

GND Ground — — Common ground for ZipWire2 device.
Clocks
XTALI Crystal Input | — Crystal = 22.1184 MHz.
XTALO Crystal Output 0 — Connection point for the crystal.
XTALO_B Crystal Clock Qut | O — Buffered-crystal oscillator output, 22.1184 MHz.
REFCLK Framer Reference | | — DSL Framer reference clock input. For most applications, connect
Clock Input REFCLK to XTALO_B (22.1184 MHz).
REFCLK can be connected to another system clock for applications that
require the DSL Framer DPLL recovered clock (RPCLK) to be phase
locked to the system clock.
CLK_AUX Auxiliary Clock 0 — Programmable Auxiliary clock output.
Output
CLK_MUX_O Muxed Clock 0 — Output Clock MUX. Can select from many of the internal clock sources.
Outputs Internal use only, should be floating, No-Connect.

BP_PLL Bypass PLL | — Set the bit pump clock source. When set to low, the ZipWire2 will use its
internal PLL. When set high, the ZipWire2 will bypass the internal PLL and
use the CLK_BP_IN as its reference clock.

Provided for internal test purposes only. This pin should be connected
low.
CLK_BP_O Bit Pump 0 — Bit pump output clock. Provided for internal test purposes only. This pin
Clock Output should be left a No-Connect.
8-6 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CN8980
ZipWire2 HDSL2/SDSL Transceiver and Framer

8.0 Pin Descriptions

8.2 ZipWire2 Signal Descriptions

Table 8-1. ZipWire2 Transceiver/Framer Signal Definitions (2 of 9)

Signal Name 1/0 | PU/PD®) Description
CLK_BP_IN Bit Pump | — Optional bit pump input clock. Provided for internal test purposes only.
Clock Input This pin should be left a No-Connect.
PCM Interface
RPCLK Receive PCM 0 — Clocks the PCM receive outputs: RPDAT, RPMSYNC, and RPDROP.
Clock Normally derived by the internal clock recovery (DPLL). Can be derived by
PEXTCLK or TPCLK.
Rising edge or falling edge output transition are selectable.
PEXTCLK PCM External Clock | | — Optionally sources the RPCLK or TPCLK or both RPCLK and TPCLK.
RPDPLLCLK RX PCM 0 — DPLL clock output. Optionally, this pin can be used externally when the
DPLL Clock DPLL doesn’t function as clock recovery but as clock generator.

RPDAT Receive PCM Data | O — During specified time slots, data is clocked out by RPCLK. This pin can be
optionally three-stated during inactive time slots or when DSL Framer is
bypassed.

RPEXTDAT Receive PCM | — Used in Multi-Pair configuration, when all the receive PCM data (from all
External Data channels) need to be routed through the master framer for PCM layer
framing and overhead handling, like E1 PRA, CRC calculation, and so on.
RPMFSYNGC Receive PCM 0 — Active high output from the receive time base. Optionally, programmed to
Multi-Frame Sync mark either Frame or Multi-Frame boundaries during framed application.
RPDROP Drop Indicator 0 — Active high output indicates when specific receive PCM time slots are
present on RPDAT. Time slot size can be 1,2,4, or 8 bit long. This pin also
controls the three-state output enable of RPDAT in Multi-Pair
configuration.
PREFSYNGC Receive PCM 1/0 PD Used in Multi-Pair configuration. When configured as a master, this
Reference Sync output is the internal receive PCM time base reset which aligns the
Receive PCM time base of each slave to the master. When slave mode is
selected this signal is an RX PCM reset input (Default).

TPCLK Transmit PCM | — Normally samples the PCM transmit inputs: TPDAT, TPMSYNC, and

Clock TPINSDAT on the falling edge and clocks out TPINSEN on the rising edge.
The edge transition is selectable.

TPDAT Transmit PCM Data | | — During specified time slots, data is sampled in by a selected clock source

(TPCLK, PEXTCLK or DPLL Recovery clock).
TPMFSYNC Transmit PCM 1/0 PD This input resets the Transmit PCM time base during framed application
Multi-Frame Sync and is ignored in unframed mode. This signal internally delayed by a
programmable bit and frame offset to coincide with TPDAT bit 0, frame 0.
Optionally programmed to mark either frame or multi-frame boundaries.
Has internal pull-downs.
TPINSDAT Transmit PCM | — Alternate source of PCM transmits serial data. TPINSDAT replaces TPDAT
Insert Data when TPINSEN is active.
TPINSEN Transmit PCM 0 — Active high output indicates when specific TPINSDAT time slots are
Insert Enable sampled.
100605C Conexant 8-7

Preliminary Information/Conexant Proprietary and Confidential

CN8980
ZipWire2 HDSL2/SDSL Transceiver and Framer

8.0 Pin Descriptions

8.2 ZipWire2 Signal Descriptions

Table 8-1. ZipWire2 Transceiver/Framer Signal Definitions (3 of 9)

Signal Name 1/0 | PU/PD®) Description
HDSL Interface
RHAUX Receive Auxiliary | O — RHDAT after descrambling is provided as an auxiliary channel and clocked
Data out by HXCLK.
RHMARK Receive Auxiliary | O — Active high output indicates when specific HDSL time slots are present on
Data Mark RHAUX. Optionally, this output provides gated HXCLK instead.
THAUX Transmit Auxiliary | | — Alternate source of HDSL transmits data. TAUX is mapped into selected
Data HDSL time slots when THLOAD is active.
THLOAD Transmit Auxiliary | O — Active high output indicates when specific HDSL time slots shall be
Data Load replaced by THAUX. Optionally, this pin provides gated HXCLK instead.
DSLSYNCI DSL Reference | — Used in Multi-Pair configuration to select the internal RDSL_REF_SEL for
Sync In DPLL phase reference and RH_BSP reset.
DSLSYNCO DSL Reference 0 — The selected DSL sync for DPLL reference and RH_BSP reset is output in
Sync Out DSLSYNCO to allow cascading the framers in Multi-Pair configuration.
Framer Bypass Interface(”)
RXDAT DSP Receive Data | O — Data is clocked out on the rising edge of HXCLK.
HXP DSP Receive 0 — Symbol clock that provides symbol boundary. Rising edge marks the least
Symbol Alignment significant bit.
TXDAT DSP Transmit Data | | — Data is sampled on the falling edge of HXCLK. THDAT shall be aligned to
the symbol boundary on HXP.
HXCLK DSP Data Rate 0 — This clock signal operates at the DSL data rate and controls the HDSL
Clock interface data signals—HXP, RXDAT, RHAUX, RHMARK, TXDAT, THAUX,
and THLOAD. Output data is clock out on the rising edge of HXCLK while
input data is sampled on the falling edge of HXCLK.
Master Bus Interface
EXT_EA Boot ROM Select | 1 — Selects source of boot ROM code:
Low = Execute boot ROM from external ROM. This option is only required
when executing from an emulator.
High = Execute boot ROM from internal ROM. This is the normal
operating mode.
The *EXT_EA and EXT8051 pins need to be adjusted when switching
between the internal 8051 and an external processor.
MB_EXTROM Program Code | — Selects source of Program code.
Select
Low = Execute program from internal Program RAM (PRAM), the
contents of the PRAM are downloaded via an external flash, Serial Boot
Link, or the Host Port RAM interface (normal operation).
High = Execute program from external ROM (emulation mode).
When the *EXT_EA pin is low (external mode), the program code also
uses the external ROM. This pin should be tied low for customer
applications. This pin is provided for internal testing.

8-8

Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CNg980

8.0 Pin Descriptions

ZipWire2 HDSL2/SDSL Transceiver and Framer

8.2 ZipWire2 Signal Descriptions

Table 8-1. ZipWire2 Transceiver/Framer Signal Definitions (4 of 9)

Signal Name 1/0 | PU/PD®) Description
MB_ADDR][0-16] | Master Bus Address | O — Master Bus Address bits 0—16. Bits 0-15 contain the 16-address bits. Bit
16 is a unused general purpose latched output. This may be used in the
future to program the external flash or facilitate paging. Customers
should leave MB_ADDR16 as a No-Connect.
MB_AD[0-7] Master Bus 1/0 PU Master Bus Address/Data bits 0—7. Address Bits [0—7] only used in
Address/Data MUXed Mode based on ALE.
MB_ALE Address Latch 0 — For multiplexed devices, the falling edge indicates the MB_AD[7:0]
Enable signals containing a valid address.

For non-multiplexed devices, MB_ALE can be ignored.

MB_OE Output Enable 0 — The MB_OE output enabled behaves as a read strobe. Falling edge of
*MB_OE indicates the external device to present the data on the bus. The
internal 8051 will sample the data on the rising edge of MB_OE.

MB_WE Write Enable 0 — The MB_WE output enabled behaves as a write strobe. The internal 8051
will present its data on the bus on the falling edge of *MB_WR. The
external device should sample the data on the rising edge of MB_WE.

MB_INTFRMR DSL Framer | — Active-low ZipWire2 framer interrupt pin. Internally connected to 8051
Interrupt Request Interrupt 3 and to P15NINT3 (Emulation mode).
When using the internal DSL Framer, this pin should be floating
(No-Connect).
In Framer Bypass mode, this interrupt pin can be connected to an external
device. However, the embedded 8051 code would need modification.
MB_INT2 Master Bus User | — Active-low interrupt pin connected to the 8051 Interrupt 2. User-definable
Interrupt #2 interrupt pin that can be connected from any external device. Requires
internal software to be modified to use this interrupt input.

MB_CS4 Framer Chip Select | O — Active-low ZipWire2 framer chip select.

In Framer Bypass mode, this interrupt pin can be connected to an external
device. However, the embedded 8051 code would need modification.

MB_CS5 External ROM 0 — Active-low external ROM chip select. When Flash Master, connect directly

Chip Select to Flash’s Chip-select pin. Otherwise, a No-Connect is used.

MB_CS6 User Chip Select#6 | O — Active-low user-definable chip select.

On EVM, connected to external RAM.

MB_CS7 User Chip Select #7 | O — Active-low user definable chip select.

On EVM, connected to 3-8 decoder to decode T1/E1 Framer, LEDs, DIP
Switches, and so on.
100605C Conexant 8-9

Preliminary Information/Conexant Proprietary and Confidential

CN8980
ZipWire2 HDSL2/SDSL Transceiver and Framer

8.0 Pin Descriptions

8.2 ZipWire2 Signal Descriptions

Table 8-1. ZipWire2 Transceiver/Framer Signal Definitions (5 of 9)

Signal Name 1/0 | PU/PD®) Description
DSL Framer Microprocessor Interface(®
FR_ADI[0-7] DSL Framer 1/0 PD DSL Framer multiplexed address/data lines. When using the internal
Address/Data 8051, these must be connected to the MB_AD[0-7] pins.
FR_CS DSL Framer | — DSL Framer chip select. When using the internal 8051, these must be
Chip Select connected to the MB_CS4 pin.
FR_ALE DSL Framer | — DSL Framer address latch enable. When using the internal 8051, these
Address Latch must be connected to the MB_ALE pin.
Enable
FR_OE DSL Framer | — DSL Framer output enable. When using the internal 8051, these must be
Output Enable connected to the MB_OE pin.
FR_WE DSL Framer | — DSL Framer write enable. When using the internal 8051, these must be
Write Enable connected to the MB_WE pin.
FR_IRQ DSL Framer 0 — DSL Framer interrupt request. When using the internal 8051, these must
Interrupt Request be connected to the MB_INTFRMR pin.
Configuration Pins
BOOT[3-0] BOOT Configuration | | — See Section 4.4.
Pins
START[5-0] START | — See Section 4.4.
Configuration Pins
DEVADR[2-0] Device Address | — See Section 4.4.
Configuration Pins
Reset
DSP_RST DSP Reset | — Asynchronous active-low input that places the device in an inactive state.
This resets the DSP and internal 8051 blocks.
This pin should be connected to the host processor's RST_0OUT
(multi-processor configuration) or an external hardware reset button
(single-processor configuration).

FR_RST DSL Framer Reset | | — Asynchronous active-low input that places the device in an inactive state.
This pin should be connected to the ZipWire2’s RST_OUT pin. This allows
the internal 8051 software to reset the DSL Framer block.

RST_OUT Reset Out 0 — Active-low output that allows the ZipWire2 device to reset external
devices.
AFE Interface

SER1_TX Serial Transmit 0 — Connect directly to ZipWire2 AFE SER1_TX, pin 39.

Data to AFE Serial interface stream that allows the bit pump to control the AFE. In
addition, provides the desired transmitted symbol data.

SER2_TX Serial Transmit 0 — Connect directly to ZipWire2 AFE SER2_TX, pin 40.

Data to AFE
SER_IRQ AFE, uP Control 0 — Connect directly to ZipWire2 AFE SER_IRQ, pin 25.
Signal
8-10 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CNg980

8.0 Pin Descriptions

ZipWire2 HDSL2/SDSL Transceiver and Framer 8.2 ZipWire2 Signal Descriptions

Table 8-1. ZipWire2 Transceiver/Framer Signal Definitions (6 of 9)

Signal Name 1/0 | PU/PD®) Description
AFE_SYNGC AFE, pP Control 0 — Connect directly to ZipWire2 AFE AFE_SYNC, pin 29.
Signal
AFE_CS AFE, pP Control 0 — Connect directly to ZipWire2 AFE AFE_CS, pin 28.
Signal
AFE_RST AFE, P Control 0 — Connect directly to ZipWire2 AFE AFE_RST, pin 11.
Signal
UP_W_D AFE, P Control 0 — Connect directly to ZipWire2 AFE UP_W_D, pin 27.
Signal
UP_R.D AFE, pP Control 0 — Connect directly to ZipWire2 AFE UP_R_D, pin 26.
Signal
AFE_CLK AFE Master Clock | O — Connect directly to ZipWire2 AFE AFE_CLK, pin 21, 27 MHz clock.
SER1_RCV Receive Transmit | | — Connect directly to ZipWire2 AFE SER1_RCV, pin 22.
Data from AFE Serial interface stream from AFE to bit pump. In addition, provides the
incoming received symbol data.
SER2_RCV Receive Transmit | | — Connect directly to ZipWire2 AFE SER2_RCV, pin 23.
Data from AFE
SER3_RCV Receive Transmit | | — Connect directly to ZipWire2 AFE SER3_RCV, pin 24.
Data from AFE
Host Port RAM Interface
HP_ADR[0-9] | Host Port Address | | — Host Port RAM Address bits 0-9.
HP_DAT[0-7] Host Port Data | I/0 PU Host Port RAM Data bits 0-7.
HP_CS Host Port | — Host Port RAM Chip-Select. Active-low.
Chip Select
HP_WE Host Port Write | — Host Port RAM Write Enable. Active-low.
Enable
HP_OE Host Port | — Host Port RAM Output Enable. Active-low.
Output Enable
HP_INT Host Port 0 — Active-low interrupt that signifies the API protocol is complete (see
External Interrupt Section 15.4).
Emulation Port(®)
EXT8051 External 8051 Mode | | — Selects source of the microprocessor:
Low = Use internal 8051. This is the normal operating mode.
High = Use an external 8051 or emulator.
Note: Both the EXT_EA and EXT8051 pins need to be adjusted when
switching between the internal 8051 and an external processor.
CLK_UP_O External 8051 Clock | O — Connect to external 8051 XTALI, ~27 MHz.
PO_AD[7-0] Emulation Port #0 | 1/0 PU Connect to external 8051 PO pins.
Address/Data [7-0] Becomes output test pins when EXT_8051 is disabled.
100605C Conexant 8-11

Preliminary Information/Conexant Proprietary and Confidential

8.0 Pin Descriptions CN8980
8.2 ZipWire2 Signal Descriptions ZipWire2 HDSL2/SDSL Transceiver and Framer

Table 8-1. ZipWire2 Transceiver/Framer Signal Definitions (7 of 9)

Signal Name 1/0 | PU/PD®) Description

P_ALE Emulation ALE | PU Connect to external 8051 ALE.

P_PSEN Emulation PSEN | | PU | Connect to external 8051 PSEN.

P2_ADR[15-8] | Emulation Port#0 |1/0 PU Connect to external 8051 P2 pins.
Address [15-8] Becomes output test pins when EXT_8051 is disabled.

P10_T2 Emulation Timer #0 | | — Connect to external 8051 Port 1, Bit 0.
P11_T2EX Emulation Timer #2 | | — Connect to external 8051 Port 1, Bit 1.
P12_RXD1 Group Talk Rx Data | | — Connect to external 8051 Port 1, Bit 2.

See Section 4.5.4 for Group Talk connections.

P13_TXD1 Group Talk Tx Data | O — Connect to external 8051 Port 1, Bit 3.

When Group Slave, signal will be three-stated to avoid contention.
See Section 4.5.4 for Group Talk connections.

P14_INT2 User Interrupt #2 | O — Connect to external 8051 Port 1, Bit 4.
Control
P15_INT3 DSL Framer 0 — Connect to external 8051 Port 1, Bit 5.

Interrupt Control.

P16_GPIO_CLK Spare 1/0

/0 PU No connection required.

P17_GPIO_DAT Spare 1/0 I/0 PU No connection required.
P30_RXDO RS232 Rx Data | — Connect to external 8051 Port 3, Bit 0. In addition, need to connect to
RS232 Receive Data.
P31_TXDO RS232 Tx Data 0 — Connect to external 8051 Port 3, Bit 1. In addition, need to connect to
RS232 Transmit Data.
P32_INTO DSP Interrupt 0 — Connect to external 8051 Port 3, Bit 2.
Control
P33_INT1 Host Port Interrupt | O — Connect to external 8051 Port 3, Bit 3.
Control
P34_GPIO_SYN Spare 1/0 1/0 PU No connection required.
P35_PRAM P3B5 1/0 PU pP emulation program Read Select.
P36_WR Emulation WR 1/0 PU Connect to external 8051 *RD.
P37_RD Emulation RD I/0 PU Connect to external 8051 *WR.
JTAG Interface
DSP_TRST DSP Test Port Reset | | PU Active-low resets the TAP controller. This pin should be connected high
for normal operation.
FR_TRST DSL Framer Test | PU Active-low resets the TAP controller. This pin should be connected high
Port Reset for normal operation.
TDI Test Data In PU JTAG test data input per IEEE Std. 1149.1-1990. Used for loading all

serial instructions and data into internal test logic. Sampled on the rising
edge of TCK. TDI can be left unconnected when not being used because it
is internally pulled high.

TDO Test Data Out 0 — JTAG test data input per IEEE Std. 1149.1-1990. Three-state output used
for reading all serial configuration and test data from internal test logic.
Updated on the falling edge of TCK.

8-12 Conexant 100605C
Preliminary Information/Conexant Proprietary and Confidential

CNg980

8.0 Pin Descriptions

ZipWire2 HDSL2/SDSL Transceiver and Framer

Table 8-1. ZipWire2 Transceiver/Framer Signal Definitions (8 of 9)

8.2 ZipWire2 Signal Descriptions

Signal Name 1/0 | PU/PD®) Description
TCK Test Clock | — JTAG test data input per JEEE Std. 1149.1-1990. Used for all test interface
and internal test logic operations. If unused, TCK should be pulled low.
T™MS Test Mode Select | PU JTAG test data input per IEEE Std. 1149.1-1990. Input signal used to
control the test-logic state machine. Sampled on the rising edge of TCK.
TMS can be left unconnected when not being used because it is internally
pulled high.
Serial Test Port(/
STP_TX0 Serial Test Port#0 | O — DSP Serial Test Port 0 Data.
Data
STP_SYNCO Serial Test Port#0 | O — DSP Serial Test Port 0 Sync.
Sync
STP_TX1 Serial Test Port #1 | O — DSP Serial Test Port 1 Data.
Data
STP_SYNCH1 Serial Test Port #1 | O — DSP Serial Test Port 1 Sync.
Sync
Miscellaneous and Test Modes
TEST_TWE — | — Leave floating. No-Connect.
TEST_TWR — 0 — Leave floating. No-Connect.
TEST_TWT — | — Leave floating. No-Connect.
TEST_TWC — 0 — Leave floating. No-Connect.
TEST_ — | — Must be tied low (to GND).
TEST_I2 — | — Must be tied low (to GND).
TEST_SSE — | — Must be tied low (to GND).
TEST_STM — | — Must be tied low (to GND).
TEST_UDR — | — Must be tied high (to 3.3 V).
TEST_CDR — | — Must be tied high (to 3.3 V).
TEST_MD1 — | — Must be tied high (to 3.3 V).
TEST_MD3 — | — Must be tied high (to 3.3 V).
TEST_RST — | — Must be tied high (to 3.3 V).
TEST_SDR — | — Must be tied high (to 3.3 V).
TEST_JTC — | — Must be tied high (to 3.3 V).
TEST_FSM — | PU Leave floating. No-Connect.
TEST_FSS — | PU Leave floating. No-Connect.
TEST_SEL — | — Must be tied low (to GND).
TEST_TRI — | — Must be tied low (to GND).
TEST_BPO — 0 — Leave floating. No-Connect.
100605C Conexant 8-13

Preliminary Information/Conexant Proprietary and Confidential

8.0 Pin Descriptions CN8980

ZipWire2 HDSL2/SDSL Transceiver and Framer

8.2 ZipWire2 Signal Descriptions

Table 8-1. ZipWire2 Transceiver/Framer Signal Definitions (9 of 9)

Signal Name 1/0 | PU/PD®)
TESTMON[9-0] — 0| —

NOTE(S):

1) When using the internal DSL Framer, these pins should be floating (No-Connect).

2) DSL Framer microprocessor pins are brought out to separate pins for internal production testing.
Only when external 8051 or Emulator is present, otherwise No-Connect.

Internal test ports, these pins should be floating (No-Connect).

5 Internally Pulled-Up (PU) or Pulled-Down (PD) with a 50-200 k<2 resistor.

Description

Leave floating. No-Connect.

8-14

Conexant 100605C
Preliminary Information/Conexant Proprietary and Confidential

CN8980 8.0 Pin Descriptions
ZipWire2 HDSL2/SDSL Transceiver and Framer 8.2 ZipWire2 Signal Descriptions

8.2.2 ZipWire2 AFE Signal Descriptions

Table 8-2 defines the ZipWire2 AFE Signal (pin) descriptions.

Table 8-2. ZipWire2 AFE Signal Descriptions (1 of 3)

Signal Name Pin Number 1/0 Description

Power and Ground

VAA 1,950, 52, — +5 V Analog Supply
57,59, 68, 76
AGND 2,10, 31, 32, 34, 48, — Analog Ground
49, 51, 53, 56, 60, 67,
75
VIO 30, 33 — +3.3 V Digital I/0 Supply

Transmit Section

LDON 54 0 Transmit, Negative (-) Line Driver Output
LDOP 55 0 Transmit, Positive (+) Line Driver Output
LDIN 63 I Transmit, Negative (-) Line Driver Input
LDIP 64 [Transmit, Positive (+) Line Driver Input
RCDRVP 65 0 Transmit, Positive (+) RC Driver Output
RCDRVN 66 0 Transmit, Negative (=) RC Driver Output

Transmit References

VRNTX 69 REF Transmit, Negative (-) Voltage Reference
VRPTX 70 REF Transmit, Positive (+) Voltage Reference

Receive Section

VXP 3 | Receive, Positive (+) Transformer Line Input

VXN 4 | Receive, Negative (=) Transformer Line Input

VH1P 5 I Receive, Positive (+) Hybrid 1 Analog Input

VH1IN 6 I Receive, Negative (=) Hybrid 1 Analog Input

VH2P 7 I Receive, Positive (+) Hybrid 2 Analog Input

VH2N 8 I Receive, Negative (=) Hybrid 2 Analog Input

Receive References

RBIAS 71 REF Reference, Current Reference Resistor

AVBIAS 72 REF Reference, Compensation Gapacitor

VCMI 73 REF Reference, Input Common Mode Voltage

VCMO 74 REF Reference, Output Common Mode Voltage

VBGN 77 REF Reference, Negative (-) Band-gap Reference, Decouple

VBGP 78 REF Reference, Positive (+) Band-gap Reference, Decouple
100605C Conexant 8-15

Preliminary Information/Conexant Proprietary and Confidential

8.0 Pin Descriptions

CN8980

8.2 ZipWire2 Signal Descriptions

Table 8-2. ZipWire2 AFE Signal Descriptions (2 of 3)

ZipWire2 HDSL2/SDSL Transceiver and Framer

Signal Name Pin Number 1/0 Description
VRNRX 79 REF Receive, Negative (=) Voltage Reference
VRPRX 80 REF Receive, Positive (+) Voltage Reference

DSP Interface
AFE_RST 11 I AFE Microprocessor Reset
AFE_CLK 21 | AFE Master Clock (27 MHz)
SER1_RCV 22 0 Rx, Serial Output Data, Line 1
SER2_RCV 23 0 Rx, Serial Output Data, Line 2
SER3_RCV 24 0 Rx, Serial Output Data, Line 3
SER_IRQ 25 0 AFE, Microprocessor Gontrol Signal
UP_R_D 26 0 AFE, Microprocessor Control Signal
UP_W_D 27 I AFE, Microprocessor Control Signal
AFE_CS 28 I AFE, Microprocessor Chip Select
AFE_SYNC 29 I AFE, Microprocessor Sync
SER1_TX 39 I Tx, Serial Input Data, Line 1
SER2_TX 40 I Tx, Serial Input Data, Line 2
Miscellaneous and Test
TEST_RX6 12 1/0 Rx, DSP Test 1/0 Pin(?)
TEST_RX5 13 1/0 Rx, DSP Test 1/0 Pin(?)
TEST_RX4 14 1/0 Rx, DSP Test 1/0 Pin(?)
TEST_RX3 15 1/0 Rx, DSP Test 1/0 Pin(?)
TEST_RX2 16 1/0 Rx, DSP Test 1/0 Pin(?)
TEST_RX1 17 1/0 Rx, DSP Test 1/0 Pin(?)
TEST_RX0 18 1/0 Rx, DSP Test 1/0 Pin(?)
TEST_CTRL1 19 | Rx/Tx, DSP Test Control, Pin 1(")
TEST_CTRLO 20 | Rx/Tx, DSP Test Control, Pin 0(")
SCAN_EN 35 | ASIC Scan Enable Input(?)
SCAN_SHFT 36 | ASIC Scan Shift Input(?)
TEST_SINE 37 | Test Mode, Internal Sine Wave Enable(")
TEST_LB 38 [Test Mode, Analog-in to Analog-out Loopback Control(”
TEST_TX0 4 1/0 Tx, DSP Test 1/0 Pin(")
TEST_TX1 42 1/0 Tx, DSP Test 1/0 Pin(")
TEST_TX2 43 1/0 Tx, DSP Test 1/0 Pin(")
TEST_TX3 44 1/0 Tx, DSP Test 1/0 Pin(")
8-16 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CN8980 8.0 Pin Descriptions
ZipWire2 HDSL2/SDSL Transceiver and Framer 8.2 ZipWire2 Signal Descriptions

Table 8-2. ZipWire2 AFE Signal Descriptions (3 of 3)

Signal Name Pin Number 1/0 Description
TEST_TX4 45 1/0 Tx, DSP Test I/0 Pin(?)
TEST_FU 46 | Test Mode(?
TEST_CNI 58 | Test Mode(?
TEST_VESD 47 [ESD Protection®
TEST_LD1 61 | Transmit, LD Spare(?
TEST_LD2 62 | Transmit, LD Spare(?
NOTE(S):

(1) These pins must be tied to AGND.
(@ These pins must be left unconnected.
() These pins must be tied to +5 V.

100605C Conexant 8-17
Preliminary Information/Conexant Proprietary and Confidential

8.0 Pin Descriptions CN8980
8.2 ZipWire2 Signal Descriptions ZipWire2 HDSL2/SDSL Transceiver and Framer

8-18 Conexant 100605C
Preliminary Information/Conexant Proprietary and Confidential

9.0 EVM Specific

This section describes any interaction of the software that is specific to the
ZipWire2 EVMs. Figure 9-1 shows the block diagram of the ZipWire2 Evaluation
Module (EVM). This section is provided since the ZipWire2 EVM uses the same

software that is sent to customers.

Figure 9-1. EVM Block Diagram

i
| LEDs | | /0 | | RAM? | @M
A A A
Y \ Flash -
- RS232
WProc IGLeAIIOﬂI A - External
uProc
Bus L y ! (Emulator) Power Supply
A A (Regulator)
v vV HDSL2 Chip Set
8051
MicroProcessor
T1/E1 y ZipWire2 Transceiver/Framer Twisted
TXLine OWi - Hybrid / surge | PAIR
Bi8370 E1/T1 | - N Zlavl\:/EeZ Tranysfgrmer<_ Protection [
| Framer/LIU »| Framer - Transceiver . -
T1/E1 i
RX Line T
Y
BNC
(Bypass Framer)
The Generic Chip Select (CS7) is used to address the external devices on the
EVM.
Table 9-1. Generic Chip Select CS7 Memory Map
Memory Range A13 | A12 | A1 Device
0xB000 - 0xB7FF 0 0 0 Bt8370 T1/E1 (input/output)
0xB300 — OXBFFF 0 0 1 LEDs #1 (output) / DIP Switch #3 (input)
0xC000 — 0xC7FF 0 1 0 LEDs #2 (output) / DIP Switch #4 (input)
0xG800 — OXCFFF 0 1 1 Reserved—Internal Use Only
0xDO0O00 — OxD7FF 1 0 0 Reserved
0xD800 — OxDFFF 1 0 1 Reserved
0xE000 — OXE7FF 1 1 0 Reserved
OxE800 — OXEFFF 1 1 1 Reserved
100605C Conexant 9-1

Preliminary Information/Conexant Proprietary and Confidential

9.0 EVM Specific

CN8980

9.1 Bt8370 E1/T1 Framer

9.1 Bt8370 E1/T1 Framer

ZipWire2 HDSL2/SDSL Transceiver and Framer

A Bt8370 E1/T1 Framer/LIU is connected to the ZipWire2 framer PCM interface.
The Bt8370 can then be connected to an external BER meter for bit error
measurements.

9.2 EVM LEDs and Miscellaneous Output

The LED Registers are 8-bit write only and are used to display status information
via LEDs about the CN8980 system. An LED is lit when a 1 is present in the
corresponding bit of the register. Table 9-2 and Table 9-3 defines the bits of the
LED Registers.

Table 9-2. DSL Status LED #1 Register—Write Only

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

DPLL RFIFO TFIFO LOSW LOS Bad NMR Fatal Error System
ERR ERR ERR (red) (red) (red) (red) IN SYNC
(red) (red) (red) (green)

Table 9-3. T1/E1 Framer Output / LED #2 Register—Write Only

If the Fatal Error LED is set, then LEDs 2—7 provide an error code (TBD).

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
T1/E1 Error T1/E1 LOF T1/E1 Sync Test Mode Multi-EVM XOE T1/E1 Term 75| T1/E1 Term
(red) (red) (green) (orange) Reset Control 100
9-2 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CNg980

9.0 EVM Specific

ZipWire2 HDSL2/SDSL Transceiver and Framer

9.3 EVM DIP Switches

9.3 EVM DIP Switches

The DIP switches are used to determine the program configuration and flow (see
Section 4.4). Table 9-4 defines the DIP switch bit definitions.

NOTE: 1f the DIP switch is used in customer applications, the DIP switch bits
would most likely be connected to either +5 V (high) or GND (low) to

hard-code their application.

Table 9-4. DIP Switch 3 Bit Definitions

DIP Switch # Description

Bit(s) Definition

1-0 Frame Structure

00 = Bypass
01 = HDSLA1
10 = HDSL2
11 = Reserved

4-2 Configuration

000 =2T1
001 = 2E1
010 = 3E1
011 = Reserved
100=1T1
101 =1E1
110 = Reserved
111 = Reserved

7-5 Test Modes and Loopbacks

000 = Normal Operation

001 = Isolated +3

010 = 4-Level Scr 1’s

011 = AFE Hybrid Analog Loopback
100 = BP Digital Near Loopback
101 = CU PRA on PRA Loopback

110 = FR LIU Line Loopback("
111 = Reserved

NOTE(S):
(1) Requires T1/E1 Framer.

Table 9-5. DIP Switch 4 Bit Definitions

DIP Switch # Description Bit(s) Definition
7-0 Undefined —
100605C Conexant 9-3

Preliminary Information/Conexant Proprietary and Confidential

9.0 EVM Specific CN8980
9.3 EVM DIP Switches ZipWire2 HDSL2/SDSL Transceiver and Framer

9-4 Conexant 100605C
Preliminary Information/Conexant Proprietary and Confidential

10.0 Software Overview

Figure 10-1 shows the software overview of the HDSL chip sets. The Bit Pump
code is responsible for the transceiver functionality (DSP + AFE) while the DSL
Framer code is responsible for the framing and mapping functionality. The DSL
Manager calls the Bit Pump and DSL Framer code to activate and maintain the
system. The Host Processor (or Serial) interface provides a way to control the
system from a host processor.

NOTE: Even though the AFE is a separate chip, the AFE is controlled by the DSP.

Figure 10-1. Software Overview

Host Port Interface

or

Serial Port Interface

ZipWire2 \
(API >
A
Y
DSL Manager
Loop . . |
Manager | LEU
A
Y y
Acgvanon Test Modes
tate
M Loopbacks
anager
A A
Y \i
DSL Framer Bit Pump / AFE Code
DSL Framer Bit Pump
Manager Manager
A A
Y v Y v Y Y
Interrupt DSL Framer Interrupt Bit Pump / AFE
— Handler Configuration 2 Handler Configuration
A A A A A A
Y Y \i Y Y Y
DSL Framer Registers Bit Pump Registers
100605_034
100605C Conexant 10-1

Preliminary Information/Conexant Proprietary and Confidential

10.0 Software Overview CN8980
10.1 Software Features ZipWire2 HDSL2/SDSL Transceiver and Framer

10.1 Software Fealures

The following provides a list of software features.

» Standalone mode

* OPTIS (HDSL2) support

» HDSL2 applications: 1T1, 1E1, Single Pair, and Custom
+ API

* Loopbacks

» Test modes

* Ability to control other devices, i.e., TI/E1 Framer

* BER meter(s)

* Performance Monitoring

+ EOC/HDLC

* One-second timer

* 2B1Q (HDSL1) support

» HDSL1 Applications: 2T1, 2E1, 3E1, 1T1, 1E1, Single Pair, and Custom
» Loop reversal — only applies to 2T1, 2E1, and 3E1

» Switch master loop — only applies to 2T1, 2E1, and 3E1
« PRA

* Autobaud

10-2 Conexant 100605C
Preliminary Information/Conexant Proprietary and Confidential

Table 11-1. Activation Phases

11.0 Embedded 8051 Software
Features

This section describes the major software blocks (features) of the ZipWire2 chip
set.

11.1 Activating the ZipWire2 Modem

The activation period is the time from when the activate (go) command is issued
until the ZipWire2 is passing payload data. The ZipWire2 solution (DSP and DSL
Framer) is extremely flexible and can support several options. See Table 11-1 for
the major phases of activation.

Phase Description
Pre-Activation Pre-activation allows the two modems to communicate messages to determine the other aspects of
training. The pre-activation protocol is typically independent of the line coding.
DSP Training DSP training is the handshake that allows the two modems to train the DSP engine (adapt filters, perform

timing recovery, and so on).

DSL Line Coding DSL line coding sets the final line coding configuration, such as 4PAM, 8PAM, Trellis On/Off, and so on.

Frame Format Frame format determines how the payload data is encapsulated into the DSL frame. The frame typically

consists of a sync word, EOC, CRC, and so on.

11.1.1 Activation State Manager (ASM)

The Activation State Manager (ASM) sits on top of these activation phases to
determine when the link is good, and when to bring down and retrain the link. The
ASM performs flow control and error handling.

In certain standards, the different activation phases overlap while other
standards are completely independent tasks. For example, in HDSL1 (2B1Q), the
frame format passes the sync word and indicator bits before the DSP finishes its
training. In HDSL2 (OPTIS), the DSP must complete its training before the DSL
Framer begins transmitting and looking for the sync word.

100605C

Conexant 11-1

Preliminary Information/Conexant Proprietary and Confidential

11.0 Embedded 8051 Software Features CN8980

11.1 Activating the ZipWire2 Modem ZipWire2 HDSL2/SDSL Transceiver and Framer

11.1.2 Pre-Activation

11.1.2.1 OPTIS
(HDSL2 1T1)
Pre-Activation

11.1.2.2 AutoBaud

11.1.2.3 G.hs

Figure 11-1 illustrates an overview of the activation. See Section 12.11 for
more details on the ASM.

Figure 11-1. Activation State Manager (ASM) Overview

Activate
(Go)

'

Pre-Activation

i

Startup
(Training)

> Tightly
Coupled

/

Final
DSL Line Code

/

Frame
Structure

/

Normal Operation
(Payload)

100605_130

Pre-activation can be as simple as determining if a far-end unit is present or as
sophisticated as remotely configuring the far-end unit and determining the
optimal data rate. The ZipWire2 supports the following pre-activation modes:

* OPTIS (HDSL2 1T1) Pre-Activation
* AutoBaud
* G.hs (future revision of silicon)

OPTIS pre-activation provides a simple ping to determine that the far-end is
present and also communicates with the transmit power back-off control. The
OPTIS pre-activation only supports the HDSL2 (1T1) mode.

AutoBaud is a Conexant solution that pings to determine that the far-end is
present, determines line quality, and remotely configures the optimal data rate
and frame format (layer 2 information).

G.hs is specified in the ITU G.shdsl standards. G.hs is also included in the ADSL
standards.
G.hs is currently not supported by the ZipWire?2 silicon.

Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CNg980

11.0 Embedded 8051 Software Features

ZipWire2 HDSL2/SDSL Transceiver and Framer 11.1 Activating the ZipWire2 Modem

11.1.3 DSP Training

The DSP (bit pump) Training handshake allows the two modems to train and pass
data. This includes the 2-, 4-, and 16-level timelines, precoder tap exchange, and
so on. The ZipWire2 supports the following training modes:

* 2B1Q—always uncoded

* OPTIS—includes precoder tap exchange, can support both coded and
uncoded modes

* G.shdsl—includes precoder tap exchange, can support both coded and
uncoded modes

11.1.4 DSL Line Coding

11.1.5 Frame Format

The DSL line coding is typically defined by standards such as uncoded 4-PAM
for 2B1Q or coded 16-PAM for OPTIS and G.shdsl. The DSL line coding is
tightly coupled with the training mode.

In non-standard applications, there could be some advantages to switching to a
different DSL line code. For example, the ZipWire2 modems could use the 2B1Q
training to train the DSP then switch to uncoded 16-PAM line code; this could
allow the modems to achieve twice the data rate at the expense of loop length.
Another example would be using the G.shdsl to train (which includes the
precoder tap exchange), then switch to a coded 4-PAM line code; this would allow
the modems to achieve an extended reach at the expense of data rate.

The ZipWire2 supports the following frame formats:

* Framer Bypass—used to support legacy RS8973 applications.
+ HDSLI

» HDSL2 (OPTIS)

* G.shdsl

The frame format is typically defined by the standards. However, as with the
DSL line coding, there is flexibility in how the frame format can be configured.
For example, the modems could train using the 2B1Q mode then switch to
uncoded 16-PAM and use the G.shdsl frame format. Another example could train
using the OPTIS coded 16-PAM then use the G.shdsl frame format.

There is minimal dependency from the frame format to the DSP training. The
main requirement is that the DSP data rate (regardless of training mode and DSL
line coding) matches the expected frame format.

100605C

Conexant 11-3

Preliminary Information/Conexant Proprietary and Confidential

11.0 Embedded 8051 Software Features CN8980
11.2 Loopbacks ZipWire2 HDSL2/SDSL Transceiver and Framer

11.2 Loopbacks

There are several loopbacks in the ZipWire2 chip set, as illustrated in Figure 11-2.
The loopbacks are controlled by the API Command loopbacks. For additional
information, see Section 17.4.11.

NOTE: The T1/E1 Framer loopbacks are supported only when the T1/E1 is
enabled. See Section 17.7.6 for a description of this command.

Figure 11-2. ZipWire2 Loopbacks

PCM Line PCM on HDSL DSP Tx Analog Silent
_T1E1_PCM_LINE _FR_PCM_ON_HDSL_LB _BP_TX_LB _AFE_SILENT_LB
LIU Line	PCM on PCM	Digital Near
_T1E1_LIU_LINE : _FR_PCM_ON_PCM_LB : _BP_DIGITAL_NEAR_LB : : _AFE_HYBRID_LB		
T1/E1 ! T : T : T ! !
RX Line L\ Y bsL
T1 /E1* > Wi > * > N * Line
F ZipWire2 ZipWire2 ZipWire2
ramer
- - Framery/\ | DSP /| o AFE
e | b A b 1 1
TX Line | | | | | |
T T T T T T
| I | l | I
| I | l [|
LIU Local : HDSL on PCM : Digital Far Digital AFE
_T1E1_LIU_LOCAL | _FR_HDSL_ON_PCM_LB| _BP_DIGITAL_FAR_LB _AFE_TX_DIGITAL_LB
I I
| |
PCM Local HDSL on HDSL
_T1E1_PCM_LOCAL _FR_HDSL_ON_HDSL_LB
100605_035
11-4 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CN8980 11.0 Embedded 8051 Software Features
ZipWire2 HDSL2/SDSL Transceiver and Framer 11.2 Loopbacks
Figure 11-3. Detailed AFE Loopbacks
Analog Transmit Hybrid 1
(_AFE_HYBRID1_LB)
/
/// Analog Transmit Hybrid 2
J _AFE_HYBRID2_LB
ZipWire2 AFE J/ /
/
. Line \)/ / DSL
o Driver / I4 VYV V * '_ ’ Line
Y Y :
Analog Silent Hybrid Hybrid i
_AFE_SILENT_LB 1 > I
|
i
| . | i
B RX x| !
12 B Filter 2 RX Bypassed |
4 O
100605_036
100605C Conexant 11-5

Preliminary Information/Conexant Proprietary and Confidential

11.0 Embedded 8051 Software Features CN8980
11.3 BER Meters ZipWire2 HDSL2/SDSL Transceiver and Framer

11.3 BER Meters

The ZipWire2 device has three independent BER meters. The internal BER
meters can be used to test the HDSL link or PCM interface data path without an
external BER tester.

* DSL Framer Tx PCM block—overrides transmitted PCM data on selected
time slots; OH unaffected.

* DSL Framer Rx PCM block—overrides received PCM data on selected
time slots; OH unaffected.

* Bit Pump Only—overrides all transmitted DSL data with a scrambled 1s
pattern. DSL Framer errors should be ignored.

11.3.1 DSL Framer Tx PCM BER Meter

PCM time slots from TSER or RSER can be examined for test patterns on a per
time slot basis, or the entire frame unframed PCM channel from TSER can be
examined. The user can select from several Pseudo-Random Bit Sequence
(PRBS) patterns (see Section 17.4.22) or an 8-bit fixed pattern (see

Section 17.4.23).

11.3.2 DSL Framer Rx PCM BER Meter
TBD

11.3.3 Bit-Pump-Only BER Meter

The Bit-Pump-Only BER meter uses its internal scrambled 1s generator and
descrambler to detect bit errors. For the BER meter to function properly, both the
HTU-C and HTU-R must issue the _BP_BER_METER_STATE API command.
Because the DSP uses its own internal scrambled 1s generator, the BER meter
cannot be used while transporting external payload data. The Bit-Pump-Only
BER meter is only valid when the bit pump has successfully completed startup.
Refer to Section 17.4.12 and Section 17.4.13 for details.

11-6 Conexant 100605C
Preliminary Information/Conexant Proprietary and Confidential

CNg980

11.0 Embedded 8051 Software Features

ZipWire2 HDSL2/SDSL Transceiver and Framer

11.4 Performance Monitoring (Error History)

11.4 Performance Monitoring (Error History)

Performance monitoring maintains a history of CRC and FEBE errors at different
time intervals. The performance monitoring feature is useful to determine when a
link deployed in the field begins to experience problems. This information is
typically only requested when a serious problem is reported. Figure 11-4 shows
the structure of the records.

In addition, the ZipWire2 Framer Error Counters maintain a running
accumulation of CRC and FEBE errors from the time the link reached normal
operation or when the Clear ZipWire2 Framer Error Counters API command was
last issued. These error counters are each 16-bits (2-bytes) wide. The CRC and
FEBE error accumulation is useful during development to verify the quality of the
link since it reports all errors and is updated every 6 ms HDSL frame.

The performance monitoring API commands are described in Section 17.4.34
to Section 17.4.41.

Figure 11-4. CRC and FEBE Error Records at Three Time Intervals

Interval 1

Interval 2

Interval 3

o 1 2 3 896 897 898 899
| |-
1 Second
—>| 15 Minutes = 900 Seconds |<—
01 2 3 92 93 94 95
— - |<—
15 Minutes
—>| 1 Day = 96 x 15 Minutes |<—
01 2 3 5 6
— |<—
1 Day
—>| 7 Days —-—

100605_037

Interval 1 records the number of CRC and FEBE errors occurring in 1-second
intervals for 15-minute time periods, and is updated every second.

Each 1-second entry is 1-byte wide and can record up to 255 errors. The error
counters will stop incrementing when they reach the maximum of 255 errors.
Record entry 0 corresponds to the previous second, while entry 899 corresponds
to 900 seconds previous.

100605C

Conexant

Preliminary Information/Conexant Proprietary and Confidential

11.0 Embedded 8051 Software Features CN8980
11.4 Performance Monitoring (Error History) ZipWire2 HDSL2/SDSL Transceiver and Framer

Interval 2 records the number of CRC and FEBE errors occurring in each
15-minute for a 24-hour time period, and is updated every 15 minutes. Each
15-minute entry is 2-bytes wide and can record up to 65,535 errors. The error
counter will stop incrementing when it reaches the maximum of 65,535 errors.
Record entry 0 corresponds to the previous 15-minute interval, while entry 95
corresponds to 96, 15-minute intervals previous.

Interval 3 records the number of CRC and FEBE errors occurring in each
24-hour interval for a 7-day period and is updated daily. Each one-day entry is
2-bytes wide and can record up to 65,535 errors. The error counters will stop
incrementing when they reach the maximum of 65,535 errors. Record entry 0
corresponds to the previous 1-day interval while entry 6 corresponds to 7, 1-day
intervals previous.

11-8 Conexant 100605C
Preliminary Information/Conexant Proprietary and Confidential

CNg980

11.0 Embedded 8051 Software Features

ZipWire2 HDSL2/SDSL Transceiver and Framer 11.5 DSL Framer Interrupt Handler

11.5.1 Sync Status

11.5 DSL Framer Interrupt Handler

The DSL Framer interrupt handler processes the HDSL 6 ms Tx/Rx and T1/E1
Framer interrupts. Sync status, error status, and indication bits are checked and
updated. Tx/Rx FIFO as well as DPLL errors are handled when they occur; EOC
request is processed and pair ID is validated during the startup stage.

The loop’s synchronization status is checked and updated every 6 ms.

11.5.2 Error Status Reporting

The Tx/Rx interrupt functions check the status registers or indication bits for
errors. Whenever an error occurs, the corresponding error counter will increment.
Use the API commands listed in Section 17.4.34 to query the error counter
results.

11.5.3 Tx/Rx FIFO Error Handling

In the Tx/Rx Interrupt functions, whenever a FIFO error occurs, the
corresponding FIFO gets reset. Resetting the FIFO causes three HDSL Frames to
be lost (corrupted), which would cause another Tx/Rx FIFO error, so the first
three passes into the Tx/Rx Interrupt function are ignored after resetting the
Tx/Rx FIFO. If the master loop RFIFO reports an error, then a RX_RST is also
issued.

100605C

Conexant 11-9

Preliminary Information/Conexant Proprietary and Confidential

11.0 Embedded 8051 Software Features CN8980
11.5 DSL Framer Interrupt Handler ZipWire2 HDSL2/SDSL Transceiver and Framer

11.5.4 DPLL Error Handling

The DPLL State Machine function is responsible for processing any DPLL errors.
Figure 11-5 illustrates the DPLL State Machine. The DPLL Error Interrupt is
triggered whenever the DPLL Phase Error exceeds the threshold (threshold to be
determined). When no DPLL error is detected, the DPLL State Machine is called
every 6 ms. The 6 ms interval is based on the master loop’s Rx 6 ms interrupt.

Figure 11-5. DPLL State Diagram

DPLLEmor (' \max_GAIN_STATE

®)

Phase Error < 40
(TBD) for 40 Frames

MED_GAIN_STATE
2
Phase Error < 20
(TBD) for 40 Frames

IDLE_GAIN_STATE |—

DPLL Normal Operation

100605_038

11-10 Conexant 100605C
Preliminary Information/Conexant Proprietary and Confidential

CN8980 11.0 Embedded 8051 Software Features
ZipWire2 HDSL2/SDSL Transceiver and Framer 11.5 DSL Framer Interrupt Handler

The basic concept of the DPLL State Machine is to increase (open up) the
DPLL bandwidth whenever an error occurs; this allows the DPLL to increase its
capture range. Then as the DPLL locks onto the far-end PCM clock, the DPLL
bandwidth is decreased to minimize the PCM RCLK jitter.

MAX_GAIN_STATE: Whenever a DPLL error occurs, the DPLL state is set
to MAX_GAIN_STATE. The DPLL bandwidth is set
to TBD (MAX_DPLL_GAIN_VALUE). The DPLL
Error LED is set. When the DPLL Phase error reads
less than 40 for 40 consecutive frames, the DPLL state
is set to MED_GAIN_STATE.

MED_GAIN_STATE: The DPLL bandwidth is set to
MED_DPLL_GAIN_VALUE. When the DPLL Phase
Error reads less than 20 for 40 consecutive frames, the
DPLL State is set to MIN_GAIN_STATE.

MIN_GAIN_STATE: The DPLL bandwidth is set to
MIN_DPLL_GAIN_VALUE. A PCM and FIFO reset
is issued which resynchronizes the PCM time base
using the stable RCLK. The DPLL Error LED is
cleared. The DPLL state is set to
IDLE_GAIN_STATE.

IDLE_GAIN_STATE: The DPLL is now assumed to be stable and the DPLL
state does nothing.

noTE: The DPLL may take up to 10 seconds to stabilize after a DPLL error is
detected.

11.5.5 Pair ID Termination (E1 Mode)

In the HDSL receive interrupt handler, if a loop’s pair ID (E1 application only)
has not been validated, the E1 pair ID validation function will be called. A loop’s
pair ID is validated only after a valid, unique pair ID occurs consecutively for six
frames.

The pair ID only applies to HDSL1 operation.

11.5.6 Indicator Bit Termination

If CRC error is detected, the FEBE indication bit is set; if E1/T1 LOS and OOF
are detected, the LOSD indication bit is set. The updated indication bits will be
written to the TIND register in the next HDSL transmit interrupt handler.

100605C Conexant 11-11
Preliminary Information/Conexant Proprietary and Confidential

11.0 Embedded 8051 Software Features CN8980

11.6 Dynamic Master Loop

ZipWire2 HDSL2/SDSL Transceiver and Framer

11.6 Dynamic Master Loop

The switching master loop is only supported in HDSL1 2E1, 2T1, and 3E1
modes.

The master loop is responsible for extracting the framing and signaling
information (F-Bit for T1 or TS0/TS16 for E1) from the HDSL frame into the
PCM data. The DSL loop handler monitors the number of loops in normal
operation, as well as the loop’s pair ID or sync word. Whenever a master loop
failure is detected, the system switches the master loop to the next available loop
in normal operation.

11.7 Tip/Ring Reversal

Tip/ring reversal is defined as the reversal of a twisted pair of wires. The
ZipWire2 device and software automatically handle any tip/ring reversal.

11.8 Loop Reversal

The loop reversal is only supported in HDSL1 2E1, 2T1, and 3E1 modes. The
loop reversal is not applicable in single pair systems (1T1 and 1E1).

Loop reversal is defined as the loop pairs are reversed as shown in
Figure 11-6. The HTU-R monitors the Sync Word (T1) or loop’s pair ID (E1) and
configures the HTU-R PCM and HDSL Map tables accordingly.

Figure 11-6. Loop Reversal Definition

HTU-C HTU-R
CH1 CH1
CH2 CH2

Loops Not Reversed

HTU-C HTU-R

CH2 CH2

Loops Reversed

100605_039

11-12

Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CNg980

11.0 Embedded 8051 Software Features

ZipWire2 HDSL2/SDSL Transceiver and Framer 11.9 Embedded Operation Channel (EOC) Operation

11.9 Embedded Operation Channel (EOC)
Operation

This section provides an overview of the Embedded Operations Channel (EOC).

11.9.1 Feature Overview

* Conforms to ANSI Standards.
» Internal 8051 handles the low-level processing:
— HDLC-like messaging: flag insertion, data transparency, and frame
error checking.
— Provides flow control: handles errors and time-out.
» Internal 8051 processes the commands as specified in the standards:
— Performs discovery probe, inventory, and configuration.
— Performs full status once-a-second.
— Separate shadowed buffers for each command so host can query results
at its leisure.
* Additional Features:
— Uses 2 of the proprietary commands for User Defined Messages and
API over EOC commands.
* Host Responsibilities:
— Update certain databases.
— Can initiate request or response messages.

11.9.2 Does Not Support

The software currently doesn’t support the following features. The silicon
supports these features but the software has not been implemented:

* Regenerators
+ Virtual Terminal Commands

11.9.3 EOC General Overview

The EOC provides a communication channel between the ZipWire2 terminal
units. This allows the units to communicate configuration and status messages.
The HTU-C is the master and initiates the EOC messages. The HTU-R can
optionally support initiating a message. Therefore, both the HTU-C and HTU-R
must respond to message requests.

In the ZipWire2 solution, the HTU-R only the initiates the Discovery Probe
request which is used as a final qualifier to determine the link is stable. The
HTU-R supports all other EOC messages; however, the host processor must
trigger the messages.

100605C

Conexant 11-13
Preliminary Information/Conexant Proprietary and Confidential

11.0 Embedded 8051 Software Features CN8980

11.9 Embedded Operation Channel (EOC) Operation ZipWire2 HDSL2/SDSL Transceiver and Framer

There are two types of messages: requests and responses.

Table 11-2. EOC Message Types

Msg Type Msg ID Range Description
Request 0x00-0x7F Used to configure the far-end, query the far-end for status, or command the
far-end to perform some task.
Response 0x80-0xFF Used to acknowledge a request and to provide status (or other information).

A complete transaction consists of a request by the near-end followed by a
response from the far-end.

11.9.4 EOC Frame Format

The EOC channel shall carry messages in an HDLC-like format as defined in
ITU-T G.997.1, paragraph 6.2. The channel shall be treated as a stream of octets;
all messages shall be an integral number of octets.

The frame format uses a compressed form of the HDLC header and is
illustrated in Table 11-3. The destination address field shall be the least
significant 4 bits of octet 1; the source address field shall occupy the most
significant 4 bits of the same octet (the address field.) There is no control field.
One or more sync octets (0x7E) shall be present between each frame. Interframe
fill shall be accomplished by inserting sync octets as needed. The Information
Field contains exactly one Message as defined below. The maximum length of a
frame shall be 75 octets, not including the sync pattern or any octets inserted for
data transparency.

Table 11-3. Frame Format for HDSL2 EOC

Octet # MSB Contents LSB

Sync pattern Ox7E

1 Source address bits 7...4 Destination address bits 3...0
2 Message ID per Table 11-5 Information
Message Content — Octet 1 Field

Message Content — Octet L

L+3 FCS Octet 1

L+4 FCS Octet 2

Sync pattern 0x7E

11-14

Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CN8980 11.0 Embedded 8051 Software Features
ZipWire2 HDSL2/SDSL Transceiver and Framer 11.9 Embedded Operation Channel (EOC) Operation

11.9.5 EOC Unit Addresses

Each unit uses one source and destination address when communicating with
upstream units, and a separate independent source and destination address when
communicating with downstream units. Each address shall have a value between
0x0 and OxF as defined in Table 11-4.

NOTE: The standards have yet to completely define the regenerator specifications;
therefore, the ZipWire2 code does not support any Regenerator
destination. In addition the Adjacent Device option is not supported.

Table 11-4. EOC Device Address

Value (C Constant) Device
0x00 (_EOC_ADJACENT) Adjacent Device
0x01 (_EOC_H2TUC) HTU-C
0x02 (_EOC_H2TUR) HTU-R
0x03 (_EOC_H2RU1) Regenerator 1
0x04 (_EOC_H2RU2) Regenerator 2
0x05 (_EOC_H2RU3) Regenerator 3
0x06 (_EOC_H2RU4) Regenerator 4
0x07 (_LEOC_H2RU5) Regenerator 5
0x08 (_EOC_H2RU6) Regenerator 6
0x09 (_EOC_H2RU7) Regenerator 7
0x0A (_EOC_H2RUS) Regenerator 8
0x0B-0x0E Reserved
OxOF (_EOC_H2BCAST) Broadcast

100605C Conexant 11-15

Preliminary Information/Conexant Proprietary and Confidential

11.0 Embedded 8051 Software Features CN8980
11.9 Embedded Operation Channel (EOC) Operation ZipWire2 HDSL2/SDSL Transceiver and Framer

11.9.6 EOC Message IDs

Table 11-5 summarizes the request and response message IDs. Messages 0-127
represent request messages. Messages 128-255 represent messages that are sent
in response to request messages. Each request message is acknowledged with the
corresponding response. Request/Response Message IDs usually differ by an
offset of 128.

Table 11-5. Summary of EOC Request Message IDs (1 of 2)

'V('ﬁii?ﬁi.')n Me?::g;’ ID Message Type Unit Which Initiates
Request Messages
0 0x00 Reserved —
1 0x01 Discovery Probe H2TU-C, H2TU-R() H2RU
2 0x02 Inventory Request H2TU-C, H2TU-R(")
3 0x03 Configuration Request—HDSL2 H2TU-C
4 0x04 Configuration Request—DS1 H2TU-C
5 0x05 Configuration Request—Loopback Time-out H2TU-C, H2TU-R(")
6 0x06 Virtual Terminal Connect Reg. H2TU-R(") H2RU(
7 0x07 Virtual Terminal Disc. Reg. H2TU-R(") H2RU(
8 0x08 Keyboard Data Message H2TU-R(") H2RU(
9 0x09 Maintenance Request—System Loopback H2TU-C, H2TU-R(")
10 0x0A Maintenance Request—Element Loopback H2TU-C, H2TU-R(")
1 0x0B Status Request H2TU-C, H2TU-R(")
12 0x0C Full Status Request H2TU-C, H2TU-R(")
13-14 0x0D-0x0E Reserved —
15 OxOF Soft Restart/Power Back-Off Disable Request H2TU-C
16-63 0x10-0x3F Reserved (Future) —
64-88 0x40-0x58 Reserved for Line Management Request —
89-111 0x59-0x6F Reserved —
112 0x70 Proprietary Message (User-Defined Message) —
113 0x71 Proprietary Message (API over EOC) —
114-119 0x72-0x78 Proprietary Message —
120 0x79 External Message —
121-124 0x7A-0xC Reserved —
125127 0x7D-0x7F Excluded —
Response Messages
11-16 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CNg980

11.0 Embedded 8051 Software Features

ZipWire2 HDSL2/SDSL Transceiver and Framer

Table 11-5. Summary of EOC Request Message IDs (2 of 2)

11.9 Embedded Operation Channel (EOC) Operation

(") Optional support. A unit may initiate this message.

w('::iml')n Mef::g;’ D Message Type Unit Which Initiates

128 0x80 Reserved —
129 0x81 Discovery Response —
130 0x82 Inventory Response —
131 0x83 Configuration Response—HDSL2 —
132 0x84 Configuration Response—DS1 —
133 0x85 Configuration Response—Loopback Time-out —
134 0x86 Virtual Terminal Connect Response —
135 0x87 Reserved —
136 0x88 Screen Data Message —
137 0x89 Maintenance Status —
138 0x8A Reserved —
139 0x8B Status/SNR —
140 0x8C Performance Status HDSL2 Network Side —
141 0x8D Performance Status HDSL2 Customer Side —
142 0x8E Performance Status DS1 —
143-191 0x8F-0xBF Reserved (Future) —
192-216 0xC0-0xD8 Segment Management Response (Reserved) —
217-239 0xD9-0xEF Reserved (Future) —
240 0xFO Proprietary Message (User-Defined Message) —
241 0xF1 Proprietary Message (API over EOC) —
242-247 0xF2—-0xF7 Proprietary Message Response —
248-252 0xF8-0xFC Reserved —
253-255 0xFD-O0xFF Excluded —
NOTE(S):

100605C

Preliminary Information/Conexant Proprietary and Confidential

Conexant

11-17

11.0 Embedded 8051 Software Features CN8980

11.10 EOC Implementation Details ZipWire2 HDSL2/SDSL Transceiver and Framer

11.10.1 EOC Transmit

11.10 EOC Implementation Details

This section provides some details on how the EOC is implemented.
Understanding what the 8051 is doing will assist customers in designing their
host processor code.

Figure 11-7 illustrates the EOC transmit implementation. The request and
response message databases are either filled in by the host processor using API
commands or from the internal 8051 processor. After the database contains the
appropriate information, the host processor or internal 8051 initiates the message.
The message ID and destination address are placed into the TxQueue to wait for
any current messages to complete.

Once the EOC channel is ready, the internal 8051 will build up the EOC frame
into the XmtEocData[]. This consists of using the destination address and
message ID from the TxQueue, copying the associated message database into the
XmtEocData[], and generating the CRC value. After the EOC frame is complete,
the DSL Framer interrupt handler will transmit 3 bytes per 6-ms frame. The
interrupt handler will insert the appropriate data transparency bytes and sync
octets (flags).

11-18

Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CN8980 11.0 Embedded 8051 Software Features
ZipWire2 HDSL2/SDSL Transceiver and Framer 11.10 EOC Implementation Details

Figure 11-7. EOC Implementation Details—Transmit

Responsibilites Responsibilites

! Main Thread . Interrupt Handler
| | I
' EocFrame o '
: 4 AR Y
! I Transmit
| TxQueue [sTAT| LEN|AD | ID] <Msg Data>| CRC | ; | EocFrame |—> Aoross Link
| (Addr/Msg ID) \) A '
Use API : !
command : Start
to initiate ! A Timer
a message !
E After the EocFrame is built up,
| Msg Databases When EOC is not busy and there the Fra_mer Interrupt handler will
! is a message in the TxQueue, transmit 3 bytes per 6-ms frame.
r ! x copy the Addr/MsgID to the In addition, it will handle flags and
i Disc EOCFrame. byte stuffing for the message.
i | Prob
! robe In addition, use MsgID to
! determine which database to fill
! Inv into the EocFrame data. The
. Regq length of the EocFrame and CRC
1 are determined.
1 | Config
| Regq
Use AP !
commands i i \
to fill in < ' >
databases 1 '
E Disc
' Resp
E Inv
! Resp
i'| Config
' | Resp
Customer ' : ZipWire2 8051

NOTE(S): The 8051 can also fill in the databases and initiate messages.

100605_103

100605C Conexant 11-19
Preliminary Information/Conexant Proprietary and Confidential

11.0 Embedded 8051 Software Features CN8980

11.10 EOC Implementation Details ZipWire2 HDSL2/SDSL Transceiver and Framer

11.10.2 EOC Receive

Figure 11-8 illustrates the EOC receive implementation. The DSL Framer will
receive 3 bytes per 6-ms frame. The interrupt handler will examine the incoming
EOC data for a non-flag character to mark the beginning of the EOC frame. The
next flag character will mark the end of the EOC frame. If the data is a valid
frame, the internal 8051 will then undo the data transparency and validate the
CRC. If the CRC is valid and the destination address matches the terminal unit,
the message data is copied into the appropriate receive message database based
on the message ID.

The actions taken next are dependant on how the specific message control was
configured and the message type (request or response). If a request message is
received, the internal 8051 can either generate the response message using the
current response database or the internal 8051 can forward the received message
to the host processor using the RxQueue buffer. If a response message is received,
the internal 8051 can either process the response information or forward the
information to the host processor using the RxQueue buffer. See Section 11.10.7
for more details on the message control and RxQueue buffer.

11-20

Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CN8980 11.0 Embedded 8051 Software Features
ZipWire2 HDSL2/SDSL Transceiver and Framer 11.10 EOC Implementation Details

Figure 11-8. EOC Implementation Details—Receive

Main Thread | Interrupt Handler

Responsibilites Responsibilites

E Discard if E
. CRC Error i
E RevEocData(] T E InFrame][]
. . - Receive
E RxQueue | AD | ID| <Msg Data>| CRC : <Incoming Data> From Link
1 (Addr/Msg ID) - '
Use API 1 i | - Rx 3 bytes per frame
command to : - End flag check
notify host ! -~
which messages ! .
were received ! If valid frame,
| perform byte
: destuffing and
i CRC validation
| Receive Msg Copy message data to
| Databases appropriate database
e : ™ based on MsgID
1| Disc
i | Probe
, Inv
E Req
i | Config
| Reg
Use API ' '
commands i '
to extract < : E > -t
database E '
information ' !
E Disc
! Resp
E Inv
! Resp
i'| Config
| Resp
Customer ' : ZipWire2 8051

NOTE(S): The 8051 can also fill in the databases and initiate messages.

100605_104

100605C Conexant 11-21
Preliminary Information/Conexant Proprietary and Confidential

11.0 Embedded 8051 Software Features CN8980
11.10 EOC Implementation Details ZipWire2 HDSL2/SDSL Transceiver and Framer

11.10.3 EOC Transaction Time

The worst-case time for a transaction would be 600 ms, assuming a 75-byte

message.

75 x 2 =150 bytes Times 2 if every byte required data transparency
150 /3 = 50 frames 3 bytes transmitted per frame

50 X 6 ms = 300 ms 6 ms per frame

300 ms X 2 = 600 ms Times 2 for request and response message

11.10.4 EOC Transaction Time-Out

According to the standards, the only time restriction is that a regenerator must
forward a message with 300 ms and that it is up to the initiating terminal unit to
handle dropped packets or a no-response. The ZipWire2 solution sets the
transaction time-out to 1 second to allow for queuing.

The ZipWire2 solution does not create a time-out for when the message is in
the TxQueue buffer. The host processor should create a watch-dog time-out of 20
seconds to safeguard against any issues with the message queuing.

11.10.5 EOC Message Control

The EOC message control determines how each request and response message is
handled by the internal 8051. In general, the internal 8051 can either process the
message or forward the message to the host for processing.

Message Control Summary:

* Auto-response to request message

* Auto-trigger a request message

» Notify host that a request or response message was received
* Notify host if an error is detected

11.10.5.1 Auto-Respons This option determines if the internal 8051 or the host is responsible for
e To Request Message processing the received request message.

0—Host Responds. The internal 8051 will notify the host when the message is
received. The host then extracts the EOC message database. After the host
performs any necessary tasks, the host fills in the response data and
triggers the response message. The host could also use the current
response database and trigger the response message.

1—Internal 8051 Responds. The internal 8051 performs any necessary tasks
(if possible) and sends out the response message using the current
response database. The host can overwrite the response database.

11.10.5.2 Auto-Triggera This option determines if the internal 8051 will send out the request message on a
Request Message regular internal. This probably only applies to status messages that need to be
updated once-a-second.
0—Don’t send out command
1—Internal 8051 will send this command out once-a-second

11-22 Conexant 100605C
Preliminary Information/Conexant Proprietary and Confidential

CNg980

11.0 Embedded 8051 Software Features

ZipWire2 HDSL2/SDSL Transceiver and Framer 11.10 EOC Implementation Details

11.10.5.3 Notify Host
That a Message Was
Received

11.10.5.4 Notify Host
When Error Is Detected

This option determines if the internal 8051 will notify the host when a message is
received.

0—Don’t notify

1—Notify

This option determines if the internal 8051 will notify the host when an error is
detected. This only applies to a transmitted request message since the request
messages activate the time-out timer to determine if a valid response message is
received (acknowledged). The response messages do not include an acknowledge.

Since the EOC protocol specifies invalid frames are dropped (discarded),
there is no way to associate the frame error with a specific message.

0—Don’t notify

1—Notify

11.10.6 EOC Transmit Queue

The EOC TxQueue provides a queuing mechanism for 10 messages. The
TxQueue is necessary since the internal 8051 (for both request and response
messages) and host processor can initiate a message at any time. The TxQueue
structure provides the following information.

typedef strucut

{
BP USBIT dest addr;
BP USBIT msg_ id;
BP USBIT msg control;
BP_US8BIT status;
BP U8BIT start time;

} EOC_TX QUEUE t;

dest_addr Destination address, see Section 11.9.5.

msg_id Request or Response message ID, see Section 11.9.6.
msg_control Message control, see Section 11.10.5.

status Message status, see Table 11-6.

start_time Only used by request messages. Sets the time the message began

transmission across the EOC channel. Does not include time in
the TxQueue. See Section 11.10.4.

100605C

Conexant 11-23

Preliminary Information/Conexant Proprietary and Confidential

11.0 Embedded 8051 Software Features CN8980
11.10 EOC Implementation Details ZipWire2 HDSL2/SDSL Transceiver and Framer

Table 11-6. EOC TxQueue Status Bits

Status Bits Description Bit(s) Definition

2-0 Message state 0—IDLE.

1—NMessage successfully complete.

2—NMessage error, refer to bits 4 and 5.

3—Message in progress. Message is being
transmitted or awaiting for response.

4—Message in TxQueue.

5-4 Error condition 0—Timed-out.
(only if Message 1—Undefined.
State = 2) 2—Undefined.
3—~Undefined.
7-6 Reserved —

11.10.7 EOC Receive Queue
TBD

11.10.8 EOC Proprietary Messages

The ZipWire2 solution uses four messages (2 request and 2 response) to
implement the API over EOC and the User-Defined Messages features.

11.10.8.1 User-Defined The User-Defined Message Request message is assigned Message ID 112. This
Message Request— allows terminal units to send proprietary message to the far-end using the EOC
Message ID 112 channel.

Table 11-7. User-Defined Message Request Information Field

Octet # Contents Data Type Reference
1 112 Message ID —
2 Length of Message (L) Unsigned char —
3 Message data byte # 1 Unsigned char —
4 Message data byte # 2 Unsigned char —
3+L Message data byte # L Unsigned char —
11-24 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CNg980

11.0 Embedded 8051 Software Features

ZipWire2 HDSL2/SDSL Transceiver and Framer

11.10.8.2 User-Defined
Message Response—
Message 1D 240

11.10 EOC Implementation Details

The User-Defined Message Response message is assigned Message ID 240. This
message will be sent in response to the User-Defined Message Request message.
This message just provides an acknowledge.

NoTE: The second byte is set to 0 to ensure future compatibility.

Table 11-8. User-Defined Message Response Information Field

Octet # Contents Data Type Reference
1 240 Message ID —
2 0 Unsigned char —

11.10.8.3 API Over EOC
Request—Message
ID 113

The API Over EOC Request message is assigned Message ID 113. This allows
the terminal units to issue API commands to the far-end using the EOC channel.

NOTE: The Length byte must not exceed 64 bytes (value of 63).

Table 11-9. API Over EOC Request Information Field

Octet # Contents Data Type Reference
1 113 Message 1D —
2 API destination Unsigned char —
3 APl opcode Unsigned char —
4 Reserved Unsigned char —
5 API Length (L), a0is 1 byte Unsigned char —
6 Reserved Unsigned char —
7 API data byte # 1 Unsigned char —
8 API data byte # 2 Unsigned char —
9+L API data byte # L Unsigned char —
100605C Conexant 11-25

Preliminary Information/Conexant Proprietary and Confidential

11.0 Embedded 8051 Software Features

CN8980

11.10 EOC Implementation Details

11.10.8.4 API Over EOC
Response—Message ID

ZipWire2 HDSL2/SDSL Transceiver and Framer

241 message provides the API status acknowledge (both control and status

commands) and any return data (status commands only).

NOTE: For a control command, the API length is set to 0 to ensure future

compatibility.

Table 11-10. API Over EOC Response Information Field

The API Over EOC Response message is assigned Message ID 241. This
message will be sent in response to the API Over EOC Request message. This

Octet # Contents Data Type Reference
1 241 Message 1D —
2 API destination Unsigned char —
3 APl opcode Unsigned char —
4 APl acknowledge status Unsigned char —
5 API Length (L), a0is 1 byte Unsigned char —
6 Reserved Unsigned char —
7 API result byte # 1 Unsigned char —
8 API result byte # 2 Unsigned char —
9+L API result byte # L Unsigned char —

11.10.8.5 Redefining

Proprietary Messages

For the other proprietary messages, the host can define the message format. This
allows the host to conform to other solutions proprietary messages.
In addition, the API over EOC and User-Defined messages can be redefined.

NOTE: The current software does not support this feature.

11.10.9 EOC Application State Machine

Figure 11-9 illustrates the EOC Application State machine. The Discovery Probe
message is used as a final qualifier to determine when the system has successfully
started up. The Discovery Probe message is sent once a second until either the
Discovery Response message is received or the activation time-out (Tact) expires.
If the activation time-out expires, the system goes to the normal operation state
but the EOC channel is not functional. This will allow the ZipWire2 to be
compatible with systems that do not support the EOC.

After the Discovery Probe, this state machine then sends the Inventory
Request and Configuration Request commands to build-up the initial databases.
Then once a second, the state machine will query the far-end’s Full Status to
update the databases.

11-26

Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CNg980

11.0 Embedded 8051 Software Features

ZipWire2 HDSL2/SDSL Transceiver and Framer

Figure 11-9. EOC Application State Machine

11.10 EOC Implementation Details

EOC Error

Bit Pump Train
and
DSL Frame Sync

Y

Discovery

Discovery

Probe Tact

Normgl
Operation

EOC Idle

HTU-R will just react to
incoming or host

Probe

Terminal
Type

HTU-C

Discovery
Response

messages. Perform Inv
and Config
Request?
Yes
Set flag so want perform
Inv and Config Request
Inventory
Request
No
Y
Configuration
Request
No, Increment no rsp ctr ARSP
3 Times?
Y
-
o Full Status
Once a second, the " | (Other Messages)
HTU-C will poll the 1 Second
far-end status and < Elansed set
other messages P \
I no rsp ctrto 0
specified by the host. No Response
Wait
-
100605_105
100605C Conexant 11-27

Preliminary Information/Conexant Proprietary and Confidential

11.0 Embedded 8051 Software Features CN8980
11.11 T1/E1 Framer and LIU Support ZipWire2 HDSL2/SDSL Transceiver and Framer

11.10.10 EOC APl Commands

Table 11-11 lists a summary of the EOC API commands. Refer to Chapter 17.0
for complete details.

Table 11-11. EOC APl Commands Summary

Control i
Command Status Opcode Description
EOC Send Command S 0xB0 Initiate a request or response message. The index into the
TxQueue is returned so the host can query for status.
EOC Get Message Status S 0xB1 Get the status for the specified message.
EOC Get Database Data S 0xB2 Extract the database information.
EOC Set Database Data C 0x60 Fill in the database information.
EOC Set Message Control C 0x61 Set the message control to determine how each message is
processed.
EOC Read Receive Queue S 0xB3 Read the RxQueue to determine which messages were
received.
EOC Set Proprietary Length C 0c62 Set the length of the proprietary message.
11.11 T1/E1 Framer and LIU Support
The code supports a TI/E1 Framer and LIU (Line Interface Unit). The framer and
LIU code contain the minimum drivers necessary to configure the framer/LIU for
a transparent mode. In addition, a minimal set of API commands is supported to
configure the framer/LIU from a host processor.
11-28 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

12.0 Embedded 8051 Code

This section provides an overview of the ZipWire2 code. Figure 12-1 shows a
detailed block diagram of the main program flow.

100605C Conexant 12-1
Preliminary Information/Conexant Proprietary and Confidential

12.0 Embedded 8051 Code

CN8980

Figure 12-1. Main Program Flow

ZipWire2 HDSL2/SDSL Transceiver and Framer

Boot Code

-

\
_DSL Initialization

Out
of Service

Yes

Handle Test Mode

Y

Disable DSL

Manager and ASM

Check?

Configure
ZipWire2

Y

DSL Yes

Y

RESET?

_API Manager

DSL
Manager
Enabled?

_BpManager

Y
_FrManager

1

_DslLoopManager

Y
DslActivationStateManager

100605_04

12-2

Conexant
Preliminary Information/Conexant Proprietary and Confidential

100605C

CN8&980 12.0 Embhedded 8051 Code
ZipWire2 HDSL2/SDSL Transceiver and Framer 12.1 Boot Code State

12.1 Boot Code State

This state downloads the external Flash into internal Program Memory (PRAM).
If multiple devices are connected, the Flash contents are serially copied from the
master device to the slave device(s).

Refer to Section 4.6 for details.

12.2 DSL Initialization State

In the initialization state, the software initializes the devices to a default
configuration. After initialization, the activation state is changed to the
Out-of-Service Check state.

12.3 Out-0Of-Service Check

The Out-of-Service state queries the STARTUP pins (see Section 4.4) to
determine whether the program should default into an IDLE (Out-of-Service)
state. If the OOS is enabled, the program bypasses the ZipWire2 configuration
states and disables the DSL loop manager and Activation State Manager. The
PCM Rx clock is set to equal the PCM Tx clock to prevent an invalid clock
driving the PCM bus. The host processor would then be responsible to enable and
configure the system through API commands.

12.4 Configure ZipWire2 State

The Configure ZipWire2 state configures the ZipWire2 system based on the
STARTUP, BOOTOP, and DIP Switches.

100605C Conexant 12-3
Preliminary Information/Conexant Proprietary and Confidential

12.0 Embedded 8051 Code

CN8980

12.5 Handle Test Mode States

ZipWire2 HDSL2/SDSL Transceiver and Framer

12.5 Handle Test Mode States

The Handle Test Mode state queries the STARTUP pins (see Section 4.4 and
Table 9-4) to determine whether any test modes should be executed. If a test mode
is selected, the program executes the specified test mode, then disables the DSL
Loop Manager and Activation State Manager. The host processor could then issue
an API command to enable the DSL Loop Manager and Activation State
Manager.

12.6 DSL Reset Check

When the program is continuously executing the DSL loop manager and
Activation State Manager, the host processor can issue the _SYSTEM_RESET
API command, as described in Section 17.3.6, to perform a software reset. When
this API is issued, the activation state is changed to the DSL Initialization state.

12.7 APl Manager

The API manager is responsible for processing API commands from the Host
Port/RS232 interface, as well as the Group Talk Serial Link.

The external host processor only communicates with the Group Master. The
Group Master will forward any slave API commands through the Group Talk
Serial Link Protocol. In addition to the host processor requests, the Group Master
will periodically poll the slaves for status information. These status results are
stored in the Group Master Host Port RAM so the host processor can efficiently
query the slave status without the latency of the API and Group Talk protocols.

The following assumptions are defined by the API protocol (refer to
Chapter 15.0):

* The host processor will not send any new message until the previous
message is acknowledged.

» The Group Master will not send any new message to a slave until the
previous message is acknowledged.

* The Group Master can process and acknowledge to the host processor a
command targeted for the Group Master while the Group Master is waiting
for the slave ACK (waiting for slave to process a local request initiated by
the Group Master).

* Every 100 ms, the Group Master will request status information from a
slave assuming that no incoming API commands are received. The Group
Master uses a simple round robin state machine to query multiple slave
devices. This should ensure that the Group Master can update the Host
Port RAM Status registers approximately once each second per device.

12-4

Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CNg980

12.0 Embedded 8051 Code

ZipWire2 HDSL2/SDSL Transceiver and Framer 12.7 APl Manager

» If the Group Master receives an APl command targeted for a slave while
the Group Master is processing a local slave request, the Host API
command will only get processed after the local slave request is
completed. Further round-robin slave request commands will be held off
until the host processor command is completed.

Table 12-1 lists API Manager flags and their descriptions. Figure 12-2
illustrates the details of the API Manager Flow.

Table 12-1. APl Manager Flag Description

Flag

Description

Group Master Flag

This flag determines whether the devices is a Group Master or Group Slave.

RX APl Message Flag

This flag is set whenever an API Command is received from the Host Port/RS232 Interface (Group
Master) or from the Group Talk Interface (Slave).

This flag is cleared when the APl command is processed and the acknowledge is sent back to
the host processor (Group Master) or to the Group Master (Slave).

Request For Slave Flag

This flag is set when the Group Master needs to send an APl message to a slave. This flag can
either be set when the host processor sends an APl message where the slave is the destination or
when the Group Master is not processing any other APl commands. The Group Master uses a
simple round-robin state machine to query multiple slave devices.

This flag is cleared when the Group Master sends the APl command to the slave.

Processing Slave Flag

This flag is set when the Group Master is currently processing a Group Slave APl Command
(Group Master is waiting for Rx Slave ACK).

This flag is cleared when the Group Master receives the Slave Acknowledge and processes the
results (by either forwarding the results to the host processor or processing the results locally).

Master To Slave Flag

This flag is set when the Group Master initiated a message for the Group Slave. This flag is low
when the host processor requests a message for the Group Slave.

Rx Slave ACK This flag is set when the Group Master receives the slave acknowledge from the Group Talk port.
This flag is cleared when the Group Master processes the slave results.
100605C Conexant 12-5

Preliminary Information/Conexant Proprietary and Confidential

12.0 Embedded 8051 Code

CN8980

12.7 APl Manager

Figure 12-2. APl Manager Flow

ZipWire2 HDSL2/SDSL Transceiver and Framer

A GROUP_MASTER to SLAVE request is
under processing. The Group Talk receive
interrupt handler will take care of the response
from SLAVE and clear Processing Slave and
Master_to_Slave flags so that the top level
codes don't need to do anything but check
those flags.

Yes

Any
request to
Slaves?

Processor
Busy?

Y

{ Return ’

-Set Mast
-Set Processing Slave

Y

|

: _to_Slave
|

|

|

|

I| Send API to Group
|

|

|

|

|

|

|

Talk Host Mail Box.

Yes

_DslApiManager()

Group
Master?

Yes

No

_DslApiManager()

RX_GROUP_TALK

-Send ACK with

ACK_STATUS = BUSY to

UIP Host Mail Box.
-Clear RX_HOST_API.

Processor
Busy?

Yes

No
?

-Send ACK with
ACK_STATUS = BUSY to
UIP Host Mail Box.

-Clear RX_GROUP_TALK.

-Process API
-Send the ACK + Status
info to UIP Host Mail Box.

1

Clear RX_API

-Set Processing Slave
-Clear Master_to_Slave

!

Send API to Group Talk
Host Mail Box.

-Process API

info to Group Talk H
Mail Box.

-Send the ACK + Status

ost

Y

Clear
RX_GROUP_TALK

Y

{ Return)

100605_041

12-6

Conexant

Preliminary Information/Conexant Proprietary and Confidential

100605C

CN8980 12.0 Embedded 8051 Code
ZipWire2 HDSL2/SDSL Transceiver and Framer 12.8 Bit Pump Manager
12.8 Bit Pump Manager
The Bit Pump Manager is responsible for maintaining the bit pump portion of the
Activation State Manager. This includes the startup training process, as well as
adapting to temperature and environment changes during normal operation.
12.9 DSL Framer Manager
The DSL Framer Manager is responsible for maintaining the DSL Framer portion
of the activation state manager.
* Framing
* Overhead bits
* Sync word
* Indicator bits
+ HDLC/EOC
* Performance monitoring
12.10 DSL Loop Manager
The DSL Loop Manager is responsible for loop reversal and switching the master
loop.
» The master loop is the first channel to reach normal operation.
* When subsequent channels reach normal operation, the pair ID/sync word
is used to determine loop reversal.
* When the master loop goes down, the master loop is set to the next
available channel.
noTE: The DSL Loop Manager is only supported by the HDSL1 standard 2T1,
2E1, and 3E1 configurations.
100605C Conexant 12-7

Preliminary Information/Conexant Proprietary and Confidential

12.0 Embedded 8051 Code CN8980
12.11 HDSL2 Activation State Manager ZipWire2 HDSL2/SDSL Transceiver and Framer

12.11 HDSL2? Activation State Manager

Figure 12-3 illustrates the state diagram for the HTU-C activation. Figure 12-4
illustrates the state diagram for the HTU-R activation.

Figure 12-3. HDSL2 HTU-C Activation State Diagram

PreAct
Request

Power ON PreActivation

Sequence

Y

Teilont R INACTW Complete

> - Silent TX }=
- Signal Detection

LOS=1&
DEACTIVATED ACTREQ = 1
— - . -t Yy
- Silent TX
T ACTIVATING
Tresync SNR > XdB & - Start ACT Timer after signal
LOSW =0 & Tact detect from HTU-R
PENDING \ [0°=0& - EC, EQL, PLL adaptation
- Fully Formatted orce Deactivate = - Coef. Exchange
HDSL2 Stream - Frame Sync, SNR Check
- SNR Check
A b sNR<YdBor
LOSW =1 or Y

SNR > XdB &
LOS=1or ACTIVE AN LOS=0&
Tresync Force Deactivate = 1 - Fully Formatted Vg LOSW = 0 (Frame Sync)
HDSL2 Stream
- SNR Check

Note: In Framer Bypass Mode,

Deactivate Bit Pump Iy LOSW is af e
BER Meter OSW is always set to 0
Deactivate Bit Pump Activate Bit Pump

BER Meter BER Meter
SNR > XdB &
LOS=0& \

PENDING \ Force Deactivate = 0 =/ Bit Pump
BP BER Meter (BER Meter

- Transmit All 1's - Transmit All 1's
- SNR Check - SNR Check

-
~otl}

SNR <YdB or
LOS =1or
Force Deactivate = 1

Bit Pump BER Meter

100605_042

12-8 Conexant 100605C
Preliminary Information/Conexant Proprietary and Confidential

CN8&980 12.0 Embhedded 8051 Code
ZipWire2 HDSL2/SDSL Transceiver and Framer 12.11 HDSL2 Activation State Manager

Figure 12-4. HDSL2 HTU-R Activation State Diagram

PreAct
Power ON Requﬂ» PreActivation
Sequence
Y
Tsilent o / INACTIVE \ » Complete
- - Silent TX }‘
- Signal Detection
LOS=1&
DEACTIVATED ACTREQ =1
S - Y
- Silent TX -
/ Tact
T ACTIVATING
SNR > XdB &
Tresync
y LOSW =0 & - Start ACT Timer
PENDING LOS=0& - EC, EQL, PLL adaptation
- Fully Formatted Force Deactivate = 0 - Coef. Exchange
HDSL2 Stream - Frame Sync, SNR Check
- SNR Check
Tresync A A SNR <YdB or
LOSW =1 or Y SNR > XdB &
LOS =1 or ACTIVE LOS=0&
Force Deactivate = 1 - Fully Formatted LOSW = 0 (Frame Sync)
HDSL2 Stream
- SNR Check Note: In Framer Bypass Mode,
F LOSW is always setto 0
Deactivate Bit Pump
. . BER Meter . .
Deactivate Bit Pump Activate Bit Pump
BER Meter BER Meter
SNR > XdB & Y
LOS=0&
PENDING \ Force Deactivate=0 ./~ Bit Pump
| BP BER Meter) BER Meter
- Transmit All 1's [~ - Transmit All 1's
- SNR Check SNR <YdB or - SNR Check
LOS=1or
Force Deactivate = 1
Bit Pump BER Meter
100605_04:

100605C Conexant 12-9
Preliminary Information/Conexant Proprietary and Confidential

12.0 Embedded 8051 Code CN8980
12.12 HDSL1 Activation State Manager ZipWire2 HDSL2/SDSL Transceiver and Framer

12.12 HDSL1 Activation State Manager

This section describes how the HDSL1 Activation State Manager is implemented
using the bit pump and DSL Framer code. The Activation State Manager is based
on the ETSI ETR-152 and ANSI T1E1.4 HDSL specifications.

Figure 12-5 and Figure 12-6 illustrates the state diagrams for activation of
HTU-C and HTU-R, respectively. Upon an activation request, the HTU-C side
transmits a two-level signal to the far end. The HTU-R side, upon an activation
request, waits for the HTU-C signal. Once the HTU-C two-level signal is
detected, the HTU-R performs frequency lock, line characterization, and echo
cancellation coefficient calculation. Upon completion, HTU-R will transmit a
two-level signal back to HTU-C and wait for a four-level signal. The HTU-C will
then perform characterization based on the HTU-R two-level signal. When
HTU-C completes its characterization, it will send a four-level 2B1Q signal. At
this stage, normal operation is reached with transmission of 2B1Q signal across
the link.

12.12.1 HTU-C Activation

Figure 12-5 illustrates the state diagram for activation at HTU-C side.

NOTE: Several states are not explicitly stated in the ETR-152 HDSL standard.
These extra states were added in order to ease the implementation of the
HDSL standard for the bit pump and DSL Framer devices.

12-10 Conexant 100605C
Preliminary Information/Conexant Proprietary and Confidential

CN8980
ZipWire2 HDSL2/SDSL Transceiver and Framer

12.0 Embedded 8051 Code
12.12 HDSL1 Activation State Manager

Figure 12-5. HDSL1 Activation State Machine at HTU-C

-Bit Pump not present

-Enter loopback/test modes

-Shut off ASM

»| System Idle

—

State

]

-Exit loopback/test modes

-Turn on ASM

Pending
Deactivated
State

(Do nothing)

LOSWT =1

Tx:2B1Q

Y

Deactived

State

Tx: Silent

LOST =1

Power On

Configuration
State

Tx: Silent

Y

Y

Inactive State

Tx: Silent

Rx:2B1Q

A

LOSW =1
LOSW =0

\
Active_Tx_Rx
State
Tx:2B1Q
Rx: 2B1Q
A

ACTREQ =1

Y
Activating State

GOTO
Active_Tx_Rx

State Tx: Silent, SO

A
Pair ID valid

Tx 4-Level =1

Pair ID Validation
State

Active_Rx State

R -
GOTO Pair ID Rx: Ready

Validation v
State S N Tx: §1

Y

Activating
State S1

LEGEND:

ACTRE = Activation Request Rx: S1 |
T-ACT Exp = Activation timer expired - - - - - - - - -
Tx 4-Level = Bit Pump is transmitting a 4-level signal

INDC = HTU-C In Sync Indicator

INDR = HTU-R In Sync Indicator

LOSW = Loss of Sync Word

LOSWT = Loss of Sync Word timer

LOST = Loss of Signal timer

100605_044

100605C Conexant

Preliminary Information/Conexant Proprietary and Confidential

12-11

12.0 Embedded 8051 Code

CN8980

12.12 HDSL1 Activation State Manager

12.12.2 HTU-R Activation

ZipWire2 HDSL2/SDSL Transceiver and Framer

Figure 12-6 illustrates the state diagram for activation at the HTU-C side.

Figure 12-6. HDSL1 Activation State Machine at HTU-R
Power On
-Bit Pump not present
-Enter loopback/test modes
-Shut off ASM | system Idle Configuration
. o State State
-Exit loopback/test modes (Do nothing) Tx: Silent
-Turn on ASM +
Pending .
Deactivated LOSWT =1 Desat(;ttlzed LOS = 1 Inactive State
State - -
Tx:2B1Q Tx: Silent Tx: Silent
Rx:2B1Q
A Losw=1
LOSW=0Y LOS=0
Active_Tx_Rx
State
Tx:2B1Q
Rx: 2B1Q
A
\
GOTO Activating State
Active_Tx_Rx
State Tx: Silent, SO
A
Pair ID valid
ar o val Tx 4-Level =1
Pair ID Validation
State
A Active_Rx State Y
\NDC e IN —
1 _actex® Tx- S1 DR < 4 Activating
GOTO Pair ID / Rx: Ready \ State S1
Validation v -
State N o7 Tx: S1
N it N
<@gy S7o~ | Active_Tx State ! -
l@* 'O/- ~
i |
" | Tx:Ready |
| Rx: S1 |
100605_045
12-12 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

13.0 HDSL2 Standards Compliance

This section highlights how the ZipWire2 device complies with certain aspects of
the HDSL2 standards:

* Pulse templates

« PSD

* Transmit power

» Tomlinson coefficients—exchange of DFE coefficients into Tx Precoder
* Encoder coefficients

» Scrambler

« CRC

* Activation sequence

« EOC

* Frame structure

» Activation sequence/timeline

13.1 Bit-Level Mapping

The bit-level mapping converts the digital data into the appropriate voltage level.
Bit 0 is the Least-Significant Bit (LSB) and is sent first.

13.1.1 Four-Level 2B1Q Mapping (HDSL1)

Table 13-1. 2B1Q PAM4 Bit-to-Level Mapping

Bit 1 (Magnitude) Bit 0 (Sign) Level
0 0 -3
1 0 -1
1 1 +1
0 1 +3
100605C Conexant 13-1

Preliminary Information/Conexant Proprietary and Confidential

13.0 HDSL2 Standards Compliance

CN8980

13.1 Bit-Level Mapping

13.1.2 Sixteen-Level Optis Mapping (HDSL2)

Table 13-2. Optis PAM16 Bit-to-Level Mapping

ZipWire2 HDSL2/SDSL Transceiver and Framer

Bit 3 Bit 2 Bit 1 Bit 0 Level
0 0 0 0 -15
0 0 0 1 -13
0 0 1 0 -1
0 0 1 1 -9
0 1 0 0 -7
0 1 0 1 -5
0 1 1 0 -3
0 1 1 1 -1
1 1 0 0 +1
1 1 0 1 +3
1 1 1 0 +5
1 1 1 1 +7
1 0 0 0 +9
1 0 0 1 +11
1 0 1 0 +13
1 0 1 1 +15

13-2 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

14.0 DSL Frame Structure

The ZipWire2 chip set supports both the HDSL1 and HDSL2 Frame Structures.
In addition, the DSL Framer can be bypassed.

14.1 Bypass DSL Frame Structure

In Framer Bypass Mode, the application would connect to the ZipWire2
Transceiver Clock and Data Interface. The digital clock and data are operating at
the DSL data rate. Refer to Section 7.4 for more details.

14.2 HDSL2 Configurations

The system supports several kinds of configurations for T1/E1 transmission using
HDSL2 technology. The basic structure of an HDSL2 frame is shown in

Table 14-1, where each frame is nominally 6 ms in length and consists of 48
payload blocks. Each payload block contains a single F- or Z-bit, plus an
application-specific number of payload bytes. Group of 12 payload blocks are
concatenated and separated by an ordered set of HDSL2 overhead bits, where a
10-bit SYNC word pattern identifies the starting location of the HDSL2 frame.
Fifty overhead bits are defined in one HDSL2 frame, but the last 4 STUFF bits
are nominally present in alternate frames. Therefore, one frame contains an
average of 48 overhead bits. Figure 14-1 shows the frame structure. The payload
block structure for different applications is shown in the following subsections.

100605C Conexant 14-1
Preliminary Information/Conexant Proprietary and Confidential

14.0 DSL Frame Structure

CN8980

14.2 HDSL2 Configurations

ZipWire2 HDSL2/SDSL Transceiver and Framer

Table 14-1. HDSL2 Frame Structure and Overhead Bit Allocation

Frame Bit # HOH Bit # Symbol Full Name HOH Register Bit
1-10 1-10 SW1-SW10 SYNC Word —
11-2326 — B01-B12 Payload Blocks 1-12 —
2327-2328 11-12 CRC1-CRC2 Cyclic Redundancy Check —

2329 13 SBID1 Stuff Bit ID Copy 1 SBID[0]
2330 14 LOSD DS1 Loss of Signal Detect TBD
2331-2338 1522 EOC01-EOCO08 EOC Bit 1-8 TBD
2339-4654 — B13-B24 Payload Blocks 13-24 —
4655-4656 23-24 CRC3-CRC4 Cyclic Redundancy Check —
4657 25 ulB Unspecified Indicator Bit TBD
4658 26 SEGA Segment Anomaly (same as FEBE) |TBD
4659-4666 27-34 EOC09-EOC16 EOC Bit 9-16 TBD
4667-6982 — B25-B36 Payload Blocks 25-36 —
6983-6984 35-36 CRC5-CRC6 Cyclic Redundancy Check —
6985 37 SBID2 Stuff Bit ID Copy 2 SBID[1]
6986 38 SEGD Segment Detect TBD
6987-6994 39-46 EOC17-E0C24 EOC Bit 17-24 TBD
6995-9310 — B37-B48 Payload Blocks 37-48 —
9311 47 SB1 Stuff Bit 1 STUFF[0]
9312 48 SB2 Stuff Bit 2 STUFF[1]
9313 49 SB3 Stuff Bit 3 STUFF[2]
9314 50 SB4 Stuff Bit 4 STUFF[3]
NOTE: The Frame Bit # field is based on the 1T1 (1552 kbps) application. Other
data rates will have a different number of frame bits.
14-2 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CNg980

14.0 DSL Frame Structure

ZipWire2 HDSL2/SDSL Transceiver and Framer

Figure 14-1. HDSL2 Frame Structure

14.2 HDSL2 Configurations

| One HDSL2 Frame |
[el il iy L
| |
| |
| |
S|S B| B B|H|B|B B|H|B|B B|H|B|B B|S|S
a|a| 208 ol o 1o 1]1 2|o|2]|2 3|o0|3|3 alala| 20O
1]2 1|2 2|H| 3|4 4|H| 5|6 6 |H[7|8 8(1]2
| !
| Co
| "t B
. LEGEND: ,
0ms Bnn = Payload blocks 1-48 6 ms
HOH = HDSL overhead
SQn = Stuff quat

14.2.1 HDSL2 _1T1

100605_0:

HDSL2_1T1 runs the standard 1-loop T1 mapping at 1552 kbps with 1 loop
carrying all the payloads from T1. Each payload block contains 1 F-bit followed
by 24 payload bytes (Figure 14-2). The relation between the payload bytes and
PCM time slot is shown in Table 14-2.

Figure 14-2. Payload Block Structure for 1T1 Application

14.2.2 HDSL2 _1E1

CH1 F | BYTE1 BYTE2 | BYTE3 | ... BYTE24
Table 14-2. 1T1 Framing
Byte 1 2 3 4 5 6 7 9 10 | 11 12
Time slot 1 2 3 4 5 6 7 9 10 | 11 12
Byte 13 (14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 22 | 23 | 24
Timeslot | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 22 | 23 | 24

HDSL2_1E1 runs the standard 1-loop E1 mapping at 2320 kbps with 1 loop
carrying all the payloads from E1. Each payload block contains 1 Z-bit followed
by 36 payload bytes (Figure 14-3). The relation between the payload bytes and
PCM time slot is shown in Table 14-3.

100605C

Conexant
Preliminary Information/Conexant Proprietary and Confidential

14-3

14.0 DSL Frame Structure CN8980
14.2 HDSL2 Configurations ZipWire2 HDSL2/SDSL Transceiver and Framer

Figure 14-3. Payload Block Structure for 1E1 Application

CH1 Zn| BYTET BYTE2 BYTE3 | ... BYTE24

100605_048

Table 14-3. 1E1 Framing
Byte 112(3|4|5[6|7|8|9(10|11|12({13|14|15|16|17|18
Timeslot |0 1|23 |4|5(6|7|8|9|10|11|{12(13|14|15|16|17
Byte 19120 21(22|23|24|25(26|27|28(29|30|31(32|33|34|35|36
Timeslot |18]19]20 (212223 (24|25|26(27|28|29(30(31| * | * |~ |~
NOTE(S): * = DBANK

14.2.3 HDSL2—Single Pair
TBD

14-4 Conexant 100605C
Preliminary Information/Conexant Proprietary and Confidential

CNg980

14.0 DSL Frame Structure

ZipWire2 HDSL2/SDSL Transceiver and Framer

14.3 HDSL1 Configurations

14.3 HDSL1 Configurations

The system supports several kinds of configurations for T1/E1 transmission using
HDSL technology. The basic structure of an HDSL frame is shown in Table 14-4,
in which each frame is nominally 6 ms in length and consists of 48 payload
blocks. Each payload block contains a single F or Z bit, plus an application
specific number of payload bytes. Groups of 12 payload blocks are concatenated
and separated by an ordered set of HDSL overhead bits, where a 14-bit SYNC
word pattern identifies the starting location of the HDSL frame. Fifty overhead
bits are defined in one HDSL frame, but the last 4 STUFF bits are nominally
present in alternate frames. Therefore, one frame contains an average of 48
overhead bits. Figure 14-4 shows the frame structure. The payload block structure
for different applications are shown in the following subsections.

Table 14-4. HDSL1 Frame Structure and Overhead Bit Allocation (1 of 2)

HOH Bit Symbol Bit Name HOH Register Bit

1-14 SW1-SW14 SYNC Word —

15 LOSD Loss of signal IND[O]

16 FEBE Far End Block Error IND[1]
Payload Blocks 1-12

17-20 EOC1-EOC4 Embedded Operation Channel EOC[0]-EQC[3]

21-22 CRC1-CRG2 Cyclic Redundancy Check —

23 PS1 HTU-R Power Status IND[2]

24 PS2 Power Status Bit 2 IND[3]

25 BPV Bipolar Violation IND[4]

26 EOC5 Embedded Operation Channel EOC[4]
Payload Blocks 13-24

27-30 EOC6-EOC9 Embedded Operation Channel EOC[5]-EQC[8]

31-32 CRC3-CRC4 Cyclic Redundancy Check —

33 HRP HDSL Repeater Present IND[5]

34 RRBE Repeater Remote Block Error IND[6]

35 RCBE Repeater Central Block Error IND[7]

36 REGA Repeater Alarm IND[8]
Payload Blocks 25-36

37-40 EOC10-EOC13 Embedded Operation Channel EOC[9]-EQC[12]

41-42 CRC5-CRC6 Cyclic Redundancy Check —

43 RTA Remote Terminal Alarm IND[9]

100605C Conexant 14-5

Preliminary Information/Conexant Proprietary and Confidential

14.0 DSL Frame Structure CN8980
14.3 HDSL1 Configurations ZipWire2 HDSL2/SDSL Transceiver and Framer

Table 14-4. HDSL1 Frame Structure and Overhead Bit Allocation (2 of 2)

HOH Bit Symbol Bit Name HOH Register Bit
44 RTR Ready to Receive IND[10]
45 uiB Unspecified Indicator Bit IND[11]
46 uiB Unspecified Indicator Bit IND[12]

Payload Blocks 37-48

47 SQ1 Stuff Quat Sign STUFF[0]
48 sQ2 Stuff Quat Magnitude STUFF[1]
49 SQ3 Stuff Quat Sign STUFF[2]
50 SQ4 Stuff Quat Magnitude STUFF[3]

Figure 14-4. HDSL1 Frame Structure

[One HDSL Frame [
e T i e I -
| |
| |
| |
S|S H|B| B B|/H|{B|B B|H|B|B B|H|B|B B[S|S
ala| S0 1oo| o 10| 1]1 2|0l 2|2 3|ola|a 4]ala| STC
112 H|1]| 2 2|H| 3|4 4|H| 5|6 6 |H|7|8 812
| | | |
| . | |
| B! G
: LEGEND: !
0ms Bnn = Payload blocks 1-48 6 ms
HOH = HDSL overhead
SQn = Stuff quat
100605_04
14-6 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CNg980

14.0 DSL Frame Structure

ZipWire2 HDSL2/SDSL Transceiver and Framer

14.3.1 HDSL1 _2T1

14.3 HDSL1 Configurations

This runs the standard 2-loop T1 mapping at 784 kbps, with each loop carrying

one-half the payloads from T1. Each payload block contains 1 F-bit, followed by
12 payload bytes (Figure 14-5). The relation between the payload bytes and PCM
time slot is shown in Table 14-5.

Figure 14-5. Payload Block Structure for 271 Application

CH1 F | BYTE1 BYTE2 BYTE3 | ... BYTE12
1B | 8-bits
CH2 F | BYTE13 | BYTE14 | BYTE15 | ... BYTE24
Table 14-5. 2T1 Framing
Channel 1
Byte 1 2 3|14 (5|6 |7]8]9 10 11 12
Time slot 1 2 3145|678 9 10 11 12
Channel 2
Byte 13 (14 |15 |16 [17 | 18 [19 | 20 | 21 22 23 24
Time slot 13 (14|15 |16 |17 |18 [19| 20 | 21 22 23 24
100605C Conexant 14-7

Preliminary Information/Conexant Proprietary and Confidential

14.0 DSL Frame Structure CN8980
14.3 HDSL1 Configurations ZipWire2 HDSL2/SDSL Transceiver and Framer

14.3.2 HDSL1_2E1

This runs the standard 2-loop E1 mapping at 1168 kbps, with each loop carrying
one-half the payloads from E1. Each payload block contains 1 Z-bit, followed by
18 payload bytes (Figure 14-6). The relation between the payload bytes and PCM
time slot is shown in Table 14-6.

Figure 14-6. Payload Block Structure for 2E1 Application

CH1 Zn | BYTE1 BYTE3 BYTES | ... BYTES35
1B i 8-bits
CH2 Zn | BYTE2 BYTE4 BYTE6 | ... BYTE36

100605_051

Table 14-6. 2E1 Framing

Channel 1

Byte 113157911 [13|15 |17 |19 | 21 | 23 | 26 | 27 | 29 | 31 | 33 35
Time slot O 13|57 |9 |11 |13 |15 |16 |18 |20 |22 | 24 | 26 | 28 | 30 DBANK

Channel 2

Byte 2 (4|6 |8(10|12 | 14 | 16 | 18 | 20 | 22 | 24 | 26 | 28 | 30 | 32 | 34 36
Time slot 0(2(4 68|10 12 |14 |16 |17 |19 | 21 | 23 | 25 | 27 | 29 | 31 DBANK

14-8 Conexant 100605C
Preliminary Information/Conexant Proprietary and Confidential

CN8980 14.0 DSL Frame Structure
ZipWire2 HDSL2/SDSL Transceiver and Framer 14.3 HDSL1 Configurations

14.3.3 HDSL1_3E1

This runs the standard 3-loop E1 mapping at 784 kbps, with each loop carrying
one-third the payloads from E1. Each payload block contains 1 Z-bit, followed by
12 payload bytes (Figure 14-7). The relation between the payload bytes and PCM
time slot is shown in Table 14-7.

Figure 14-7. Payload Block Structure for 3E1 Application

CH1 Zn| BYTE1 BYTE4 BYTE7 | ... BYTE34
1B i 8-bits

CH2 Zn | BYTE2 BYTES BYTE8 | ... BYTES35

CH3 Zn| BYTES3 BYTE6 BYTE9 | ... BYTE36

100605_052

Table 14-7. 3E1 Framing

Channel 1

Byte 1 4 |7 (10 | 13 | 16 | 19 | 22 | 25 | 28 | 31 | 34
Timeslot | 0 | 1 | 4 7 10 | 13 | 16 | 17 | 20 | 23 | 26 | 29

Channel 2

Byte 2 |58 | M1 14 | 17 | 20 | 23 | 26 | 29 | 32 | 35
Timeslot | 0 | 2 | 5 8 1 14 | 16 | 18 | 21 24 | 27 | 30

Channel 3

Byte 3 |6 |9 |12 |15 | 18 | 21 24 | 27 | 30 | 33 | 36
Timeslot | 0 | 3 | 6 9 12 |15 | 16 | 19 | 21 25 | 28 | 3

100605C Conexant 14-9
Preliminary Information/Conexant Proprietary and Confidential

14.0 DSL Frame Structure CN8980
14.3 HDSL1 Configurations ZipWire2 HDSL2/SDSL Transceiver and Framer

14.3.4 HDSL1_1T1

This runs the standard 1-loop T1 mapping at 1552 kbps, with 1 loop carrying all
the payloads from T1. Each payload block contains 1 F-bit, followed by 24
payload bytes (Figure 14-8). The relation between the payload bytes and PCM
time slot is shown in Table 14-8.

Figure 14-8. Payload Block Structure for 1T1 Application

CH1 F | BYTE1 BYTE2 BYTE3 | ... BYTE24

100605_053

Table 14-8. 1T1 Framing
Byte 1 2 3 4 5 6 7 8 9 10 | 11 12
Time slot 1 2 3 4 5 6 7 8 9 10 | 11 12
Byte 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 22 | 23 | 24
Timeslot | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 22 | 23 | 24

14.3.5 HDSL1_1E1

This runs the standard 1-loop E1 mapping at 2320 kbps, with 1 loop carrying all
the payloads from E1. Each payload block contains 1 Z-bit, followed by 36
payload bytes (Figure 14-9). The relation between the payload bytes and PCM
time slot is shown in Table 14-9.

Figure 14-9. Payload Block Structure for 1E1 Application

CH1 zN [BYTE1 BYTE2 BYTE3 | ... BYTES36

100605_054

Table 14-9. 1E1 Framing
Byte 1 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14 [15 | 16 | 17 | 18
Time slot 0 1 2 3 4 5 6 7 8 9 10 (11 |12 | 13 | 14 | 15 | 16 | 17
Byte 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36
Timeslot | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 * * * *

NOTE(S): * = DBANK

14.3.6 HDSL1_DSL_CUSTOM

To customize the DSL Framer code for applications other than standard 1T1, 2T1,
1E1, 2E1, and 3E1, the DSL Framer code needs to be modified.

14-10 Conexant 100605C
Preliminary Information/Conexant Proprietary and Confidential

15.0 API: Microprocessor
Communicator Ghannel Protocol

The API (Application Programmer Interface) commands are passed from an
external processor to the ZipWire2 8051 Microprocessor via 3 possible interfaces
(see Figure 15-1).

* Host port RAM interface
» RS232 serial interface
* Group Talk serial interface (Group Slave only)

In applications that have another external embedded microprocessor in the
system, the external processor writes to the host port RAM. In applications that
only use the internal ZipWire2 microprocessor, an external terminal (PC) could
communicate to the system via the RS232 interface.

Only the host port RAM interface or RS232 serial interface protocol should be
implemented in a system because the RS232 interface uses the host port RAM for
local storage. In a multiple device configuration using the Group Talk protocol,
the Group Master would be connected to the host processor (via either the host
port or RS232 interface). The Group Slave would be connected to the Group
Master via the Group Talk interface.

100605C

Conexant 15-1

Preliminary Information/Conexant Proprietary and Confidential

15.0 API: Microprocessor Communicator Channel Protocol

CN8980

Figure 15-1. Communication Channel Protocols

ZipWire2 HDSL2/SDSL Transceiver and Framer

PC or Terminal
(Running UIP)

A
Grop Talk > Group Slave(s)
RS232
' - .
Y A
Serial ZipWire2
Serial Interface 1
Interface O (Group Talk
Only)
A A
Y Y Host Port RAM
INTR Host -->
<-- INTR 8051
Acknowledge Byte
reserved
Internal wProc
Bus Bus
8051 Core < - Host
Processor
API Data
Contents
Status
A
Host Port RAM
Interface
Y
ZipWire2 Registers
100605_055
15-2 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CNg980

15.0 API: Microprocessor Communicator Channel Protocol

ZipWire2 HDSL2/SDSL Transceiver and Framer 15.1 APl Message Time-Out

15.1 API Message Time-0ut

The 8051 processor is guaranteed to locally process and complete an API
command within 1 ms. When using the serial RS232 or Group Talk interface,
each byte takes ~100 us when running at 115 k (87 us to transfer the data plus
10 ws for the microprocessor to process). Therefore, the serial RS232 and Group
Talk interfaces can each add up to ~7 ms to complete certain API commands such
as performance history dumps.

15.2 API Master and Slave Implementation

The API Communication Protocols are Master and Slave implementations where
the host processor is the master and the ZipWire2 8051 processor is the slave.
This implies that only the host processor can initiate any messages through the
communication channel. The 8051 processor cannot initiate any messages to the
host processor but will only react to incoming messages. However, in Group Talk
mode, the Group Master will initiate messages to the Group Slave to query for
status information.

15.2.1 No Peer-to-Peer Protocol

A Peer-to-Peer protocol (which allows either the host or 8051 to initiate a
message) is not implemented. One major advantage with the Peer-to-Peer
protocol would be that the 8051 processor could generate an asynchronous
interrupt if a fatal error was detected. However, it was assumed the host processor
would have to poll for the ZipWire2 chip sets for line quality, CRC errors, and so
on, at some regular interval, so a Fatal Error indicator is included in the status
registers. More importantly, when using the multidevice drop Group Talk
protocol, there are hardware limitations that prevent a slave from soliciting the
master.

100605C

Conexant 15-3

Preliminary Information/Conexant Proprietary and Confidential

15.0 API: Microprocessor Communicator Channel Protocol CN8980
15.3 API Message Structure ZipWire2 HDSL2/SDSL Transceiver and Framer

15.3 API Message Structure

The API message structure is defined to allow a consistency between the host
port RAM interface, the RS232 serial interface, the Group Talk interface, and the
EOC channel. The message consists of a fixed-length header packet and the data
parameters, up to 75 bytes.

15.3.1 Incoming Message Structure

Table 15-1 lists the incoming message structure from the host processor to the
8051 processor. The message structure contains a variable-byte structure that
consists of two sections (the header and the data) with the following fields:

1. Header: destination, opcode, a reserved byte, and length
2. Data: data parameters

This message structure is the same for control and status request commands.

Table 15-1. Incoming Messages from the Host Processor

Header Section

Data Section

Destination

Opcode

Reserved

Length

Data Parameters

1 Byte

1 Byte

1 Byte

1 Byte

(Length + 1) Bytes

15.3.2 Outgoing Message Structure

Table 15-2 lists the outgoing messages from the 8051 processor to the host
processor. The message structure includes a status acknowledge message and the
status results (when a status command is requested).

For control commands, only the acknowledge response section is sent from the
8051 processor to the host processor. For status request commands, both the
acknowledge response and data sections are sent from the 8051 processor to the
host processor.

Table 15-2. Outgoing Messages from the 8051 Processor

Acknowledge Response Section (Header) Data Section

Destination Opcode ACK Status Length Data Parameters

1 Byte 1 Byte 1 Byte 1 Byte (Length + 1) Bytes

Control Command Response

Status GCommand Response

15-4 Conexant 100605C
Preliminary Information/Conexant Proprietary and Confidential

CNg980

15.0 API: Microprocessor Communicator Channel Protocol

ZipWire2 HDSL2/SDSL Transceiver and Framer

15.3 API Message Structure

15.3.3 Header Section—Destination Field

15.3.3.1 Header
Section-0pcode Field

Table 15-4. API Opcode Type

The destination field selects the device to which the command is targeted. Only
the 4 lower bits are used to decode the destination. The upper 4 bits are reserved
for the header byte in the RS232 serial interface protocol. When using the host
port RAM interface, the upper 4 bits should be set to 0.

Table 15-3. Destination Field Specification

Destination Device

0 _ZIP_WIREO

1 _ZIP_WIRE1
_ZIP_WIRE2
_ZIP_WIRE3
_ZIP_WIRE4
_ZIP_WIRE5
_ZIP_WIREG
_ZIP_WIRE7
_EVM
_T1_E1_FRAMER

O || N|oo|o| | wW|MN

10-14
15 _ZIP_WIRE_BROADCAST

Reserved

Destination values 8 and above are only intended when the 8051 is controlling
other external devices (i.e., T1/E1 Framer). When a second embedded controller
is available, the second processor should control the other external devices.

The broadcast destination value (15) is only used during the program
download. This allows multiple slave devices to program simultaneously.

The opcode field selects the specific control command or status request to be
executed. The most significant bit (bit 7) is used to determine if the opcode is a
control or status request as shown in Table 15-4. See Chapter 17.0 for opcode
values and descriptions.

Bit # 7 Opcode Range (HEX) Opcode Range (DEC) API Type
0 0x00-0x7F 0-127 Control Command
1 0x80—0xFF 128-255 Status Request
100605C Conexant 15-5

Preliminary Information/Conexant Proprietary and Confidential

15.0 API: Microprocessor Communicator Channel Protocol

CN8980

15.3 API Message Structure

ZipWire2 HDSL2/SDSL Transceiver and Framer

15.3.4 Header Section—Reserved Byte or ACK Status

15.3.4.1 Acknowledge
Status Byte

For incoming messages from the host processor, the third byte of the header is
reserved for future expansion and to be compatible with the outgoing message
field that contains the acknowledgement status (ACK Status) byte. For incoming
messages, the reserved byte must be set to 0.

For each control and status request message received and processed from the host
processor, the 8051 processor will generate an acknowledge status byte which
should be used for error checking and to determine the host processor behavior.

Table 15-5 lists the codes that are generated.

Table 15-5. Acknowledge Status Codes (1 of 2)

A #define
Status Description Value (as defined in DSL_API.H)

Not Completed Current API command has not been completed or 0x00 _ACK_NOT_COMPLETE

no APl command was sent to this device. This is

used when multiple INTR_HOST interrupts are

ORed together to the host processor.
API Successful No Error, message was successfully completed. 0x01 _ACK_PASS

Any status data is valid.
Busy 8051 Busy, unable to process command. The host 0x02 _ACK_BUSY

should re-send command after some 500 ms.
Not Applicable The APl command is not applicable to the current 0x03 _ACK_NOT_APPLICABLE

H/W or S/W configuration.
Invalid Dest An invalid Destination was specified. 0x04 _ACK_INVALID_DEST
Invalid Opcode An invalid Opcode was specified. 0x05 _ACK_INVALID_OPCODE
Invalid Length An invalid Length was specified. 0x06 _ACK_INVALID_LENGTH
Invalid Data An invalid data parameter(s) was detected. 0x07 _ACK_INVALID_DATA
Invalid Checksum An invalid Checksum parameter(s) was specified. 0x08 _ACK_INVALID_CHKSUM
No Result The 8051 was unable to complete the specified 0x09 _ACK_NO_RESULT

status request. No results are returned.
Not Available The ZipWire2 is currently out-of-service. 0x0A _ACK_NOT_AVAILABLE
Invalid Slave The Group Master detected an invalid checksum 0x0B _ACK_CHECKSUM_WRONG
Checksum from the Group Slave. The data is not sent to the

host processor.
Slave Timed-Out The Group Master timed-out during the Group 0x0C _ACK_TIME_OUT

Slave request from the host processor. Any status

data will not be sent to the host processor.

15-6

Conexant

100605C

Preliminary Information/Conexant Proprietary and Confidential

CNg980

15.0 API: Microprocessor Communicator Channel Protocol

ZipWire2 HDSL2/SDSL Transceiver and Framer

Table 15-5. Acknowledge Status Codes (2 of 2)

15.3 API Message Structure

application.

A #define
Status Description Value (as defined in DSL_API.H)

Boot ROM Wake-up The 8051 Boot ROM has successfully initialized 0x0D _ACK_BOOT_WAKE_UP

and is awaiting the host download. This code is

only set when the PRAM download is selected

from host port RAM or the Group Talk.
Operational Code The 8051 has successfully reached the 0x0E _ACK_OPER_WAKE_UP
Wake-up operational code.
Reserved These codes are reserved for future expansion of Ox0F-0x17 —

the 8051 code.
Customer Defined These codes are reserved for use by the customer 0x18-0x1F —

100605C

Conexant

Preliminary Information/Conexant Proprietary and Confidential

15-7

15.0 API: Microprocessor Communicator Channel Protocol CN8980

15.3 API Message Structure

ZipWire2 HDSL2/SDSL Transceiver and Framer

15.3.5 Header Section—-Message Length Field

The message length field is a value from 0-255 (0x00—0xFF) to provide the
number of bytes in the data parameters field (0—74). The number of bytes in the
data field will always be at least 1, so a 0 length specifies that 1 byte will be in the
data field; thus the length is equal to the number of bytes in the data parameter
plus 1. The maximum length is then 75 bytes.

15.3.6 Data Section—Data Parameter Field

For control commands, the data parameter field provides additional data (or
parameters) for the given API command. In commands where there is no need for
additional data, Os should be placed as the data byte to ensure future
compatibility.

NOTE: For invalid parameters, the software will typically use the default value in
addition to returning the Invalid Data Acknowledge Status byte, see
Section 15.3.4.1.

For status request commands, the data parameter field provides the results for
the given API command.

15-8

Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CNg980

15.0 API: Microprocessor Communicator Channel Protocol

ZipWire2 HDSL2/SDSL Transceiver and Framer

Table 15-6. Host Port RAM Mapping (1 of 2)

15.4 Host Port RAM Interface Protocol

15.4 Host Port RAM Interface Protocol

The host port RAM is a dual port RAM so both processors can read and write to
the RAM. Registers 0x00 (INTR_HOST) and 0x01 (INTR_8051) are special
registers that behave uniquely. Table 15-6 lists the mapping for the host port RAM
and provides a brief description of the register function.

Register Label Description
0x000 INTR_HOST Writing to this register generates an interrupt to the host processor. Reading
this register clears the interrupt.
The 8051 should only write to this register while the host processor
should only read this register.
0x001 INTR_8051 Writing to this register generates an interrupt to the 8051. Reading this
register clears the interrupt.
The host processor should only write to this register while the 8051
should only read this register.
0x002 Host Port Version Host Port Version ID. The host software would this ID to determine the host
port RAM address mapping and protocols.
Incoming API Message Structure
0x003 API In Destination Incoming API Destination Field.
0x004 API In Opcode Incoming API Opcode Field.
0x005 API In Reserved Reserved for future expansion, set to 0.
0x006 APl In Length Incoming API Data Length. Specifies the number of API Data bytes for
incoming APl commands. A 0 represents 1 byte; the maximum is 75 bytes
(value of 74).
0x007 API In Reserved Reserved for R§232 protocol. Value ignored when connected to host port

RAM.

0x008-0x052 APl In Data Incoming API Data—up to 75 bytes.
0x053 Reserved Reserved for RS232 protocol. Value ignored when connected to host port
RAM.
Outgoing APl Message Structure
0x054 API Out Outgoing API Destination Field.
Destination
0x055 API Out Opcode Outgoing API Opcode Field.
0x056 API QOut Status Acknowledge Byte. When the INTR_HOST is detected, the host processor
Acknowledge queries this byte to determine what further action needs to take place.
0x057 API Qut Length Outgoing API Data Length. Specifies the number of API Data bytes for
outgoing APl commands. A 0 represents 1 byte; the maximum is 75 bytes
(value of 74). For control commands and non-successful status
acknowledges, this value will be set to 0.
100605C Conexant 15-9

Preliminary Information/Conexant Proprietary and Confidential

15.0 API: Microprocessor Communicator Channel Protocol CN8980
15.4 Host Port RAM Interface Protocol ZipWire2 HDSL2/SDSL Transceiver and Framer

Table 15-6. Host Port RAM Mapping (2 of 2)

Register Label Description
0x058 Reserved Reserved for RS232 protocol. Value ignored when connected to host port
RAM.
0x059-0x0A3 API Qut Data Outgoing API Data—up to 75 bytes.
0x0A4 Reserved Ezs&rved for RS232 protocol. Value ignored when connected to host port

Reserved for Group Talk and Internal Use

0x0A5-0x3BF Reserved

Status Information
0x3C0-0x3C7 Status_0 Status for Device #0(7)
0x3C8-0x3CF Status_1 Status for Device #1(7)
0x3D0-0x3D7 Status_2 Status for Device #2(7)
0x3D8-0x3DF Status_3 Status for Device #3(7)
0X3E0-0x3E7 Status_4 Status for Device #4(7)
0x3E8-0x3EF Status_5 Status for Device #5(7)
0x3F0-O0X3F7 Status_6 Status for Device #6(7)
0x3F8-0X3FF Status_7 Status for Device #7(7)
NOTE(S):

(1) See Section 17.3.13.

15.4.1 INTR_HOST and INTR_8051 Registers

Whenever register 0x00 or 0x01 is written to, an interrupt is generated. Whenever
register 0x00 or 0x01 is read, the interrupt is cleared. The hardware interrupts are
active-low. The INTR_HOST (addr 0x00) and INTR_8051 (addr. 0x01) are used
to signal to the other processor that data is available in the host port RAM.

15-10 Conexant 100605C
Preliminary Information/Conexant Proprietary and Confidential

CNg980

15.0 API: Microprocessor Communicator Channel Protocol

ZipWire2 HDSL2/SDSL Transceiver and Framer 15.4 Host Port RAM Interface Protocol

15.4.2 Host Port Acknowledge Register

Unsolicited Interrupt

API Response

Acknowledge Status

Register 0x058 (ACKNOWLEDGE) is used as the API acknowledge status byte.
Whenever the host processor detects the INTR_HOST interrupt, the host must
query the acknowledge byte to determine the course of action. The acknowledge
status byte can be viewed as an Interrupt Service Register (ISR).

The all-Os (Not Completed) value is used in a multiple-group master
environment where the INTR_HOST interrupt lines are ORed together to the host
processor. When the INTR_HOST is detected, the host processor polls each
device’s acknowledge byte to determine where the interrupt was generated.

The host processor is responsible for clearing the acknowledge register before
exiting its INTR_HOST interrupt handler. This ensures the acknowledge byte is 0
(Not Completed) in the event that another device generates a separate
INTR_HOST request.

Table 15-7. Acknowledge Status Register (Interrupt Source Register)

Bit 7 Bit 6 Bit 5 Bit 4:0

Unsolicited Interrupt Reserved API Response Acknowledge Status

Read STATUS_8 to determine the source of the unsolicited interrupt.

This bit sets when the 8051 processor responds to a host API command. In
addition, this bit sets when the 8051 processor triggers a boot ROM or operational
code wake-up interrupt. The Acknowledge Status byte provides the status code to
determine the host program’s flow.

NOTE: The API response and wake-up are mutually exclusive events and therefore
can share the same bit-field.

The Acknowledge Status byte provides the status code of the current API
command (see Table 15-5).

15.4.3 Host Port Status Registers

Registers 0x3C0—0x3FF contain the status for each of the devices within that
particular group. This eliminates the inefficiency of the API message protocol
when the host processor needs to query for common status during normal
operation. Each device has up to 8 bytes of status.

NOTE: The host processor should never write to the Status_n registers since the
8051 processor uses this RAM as the storage location for the status
information. Writing to these registers could corrupt the status information
and cause unpredictable behavior. Reading the Status_n register will return
the same result as the STATUS_n API command.

100605C

Conexant 15-11

Preliminary Information/Conexant Proprietary and Confidential

15.0 API: Microprocessor Communicator Channel Protocol

CN8980

15.4 Host Port RAM Interface Protocol

Table 15-8 lists the details of the host port RAM status mapping.

Table 15-8. Host Port RAM Status Mapping

ZipWire2 HDSL2/SDSL Transceiver and Framer

Register Offset Label Description
0x00 Status Byte 0 See API Command STATUS_0
0x01 Status Byte 1 See APl Command STATUS_1
0x02 Status Byte 2 See API Command STATUS_2
0x03 Status Byte 3 See API Command STATUS_3
0x04 Status Byte 4 See API Command STATUS_4
0x05 Status Byte 5 See API Command STATUS_5
0x06 Status Byte 6 See API Command STATUS_6
0x07 Status Byte 7 See API Command STATUS_7
15-12 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CN8980 15.0 API: Microprocessor Communicator Channel Protocol
ZipWire2 HDSL2/SDSL Transceiver and Framer 15.5 Host Port RAM Interface Sequence of Events

15.5 Host Port RAM Interface Sequence of
Events

The host processor writes to the host port RAM based on the desired API
command, then writes OXFE to the INTR_8051 to trigger to the 8051 that an API
command is ready. The 8051 interrupt handler will set a flag to process the API
command. The API command is then processed in the main thread when the 8051
processor has available time. After the 8051 processor processes the API
command and writes the results into the host port RAM, the 8051 processor
writes to the INTR_HOST register to acknowledge to the host that the API
command is complete. The host processor can now read the acknowledge status
register and any valid status information. The host processor then needs to write a
0 into the acknowledge status register and the INTR_HOST register. The host
processor then reads from INTR_HOST to clear the interrupt. This completes the
API command.

From the time the host processor writes to the INTR_8051 and until the
INTR_HOST is detected, the host processor must not write to the host port RAM.
Writing to the host port RAM could corrupt the current API command. In
addition, the host processor should only read the host port RAM after the
INTR_HOST is detected. Reading the host port RAM before the INTR_HOST is
detected will not corrupt any data, but the contents of the data would be invalid.
The host processor should write to the INTR_HOST to clear the interrupt only
after the API status results are read and the acknowledge byte is written to 0.

The 8051 processor is guaranteed to only read/write to or from the host port
RAM after the INTR_8051 is detected and until the INTR_HOST is generated.

Table 15-9 illustrates the host port RAM sequence of events. The
<Processor>-Main indicates this task is accomplished in the main thread while
the <Processor>-ISR indicates this task is accomplished in the interrupt service
handler.

NOTE: Host implementation is application- and processor-specific and may differ
depending on the host processor environment.

Table 15-9. Host Port RAM Message Protocol Events (1 of 2)

Processor Action

Host-Main Check if group is available (host semaphore)

Host-Main Lock group (host semaphore)

Host-Main Write API content registers

Host-Main Write to INTR_8051 register to initiate message (addr 0x01) to OxFE
8051 Detect INTR_8051

8051-ISR Read API content registers

8051-ISR Write INTR_8051 to 0x00

8051-ISR Clear INTR_8051 interrupt by reading from the INTR_8051 register

100605C Conexant 15-13
Preliminary Information/Conexant Proprietary and Confidential

15.0 API: Microprocessor Communicator Channel Protocol CN8980
15.5 Host Port RAM Interface Sequence of Events ZipWire2 HDSL2/SDSL Transceiver and Framer

Table 15-9. Host Port RAM Message Protocol Events (2 of 2)

Processor Action

8051-Main Perform API task

8051-Main If status request, write results into host port RAM
8051-Main | Write INTR_HOST register to initiate acknowledge (addr 0x00) to OxFE

8051-Main Write acknowledge status byte
Host Detect INTR_HOST

Host-ISR Read acknowledge to determine which device generated interrupt

Host-ISR Write the acknowledge status byte register to 0
Host-ISR Write INTR_HOST to 0x00
Host-ISR Clear INTR_HOST interrupt by reading from the INTR_HOST register

Host-Main If status request, read API data length and data registers to processes results

Host-Main Clear group (host semaphore)

Host-Main Host is clear to send another message

NOTE: In applications configured as Figure 3-3, the communication group
channel must be blocked when sending to any device in that group. The
host processor cannot send another message to that group until the API
command is completed (or until time-out).

In multitasking environments, the host semaphore is used to prevent the host
from sending any additional commands until the current command is completed.
If the communication channel is unavailable to send another command, the host
processor could put the task to sleep and switch to process other tasks. When the
INTR_HOST is detected and the data is processed, the task can be awakened and
processed.

15.5.0.1 Host Processor In non-multitasking environments, simply poll and wait until INTR_HOST can be
Polling Method implemented. This is accomplished by polling the INTR_HOST register and
looking for a OXFE.

15.5.1 Multi Device System

In a multi-ZipWire2 device system (refer to Section 3.2), the INTR_HOST
interrupts lines would be wire-ORed together. The host processor must be able to
handle when multiple ZipWire2 devices send back an acknowledge at the same
time.

The Not Completed acknowledge status code (see Table 15-5) is critical in
multi-ZipWire2 device systems. When the host processor detects the
INTR_HOST interrupt, the host processor polls the acknowledge status request to
determine which device generated the interrupt.

15-14 Conexant 100605C
Preliminary Information/Conexant Proprietary and Confidential

CN8980 15.0 API: Microprocessor Communicator Channel Protocol
ZipWire2 HDSL2/SDSL Transceiver and Framer 15.6 RS232 Serial Interface Protocol

15.6 RS232 Serial Interface Protocol

The RS232 serial interface protocol is an asynchronous serial channel that allows
an external PC (or terminal) to communicate with the ZipWire2 chip set via an
RS232 connector (see Section 4.5.3 for hardware details).

15.6.1 Host Processor to 8051 Processor Message Structure

All RS232 messages sent from the host processor to the 8051 processor are
contained in a variable byte structure that must be at least 7-bytes long, as shown
in Table 15-10. The message structure contains a variable byte structure that
consists of two sections (the header and the data) with the following fields:

1. Header: destination, opcode, a reserved byte, length, and checksum

2. Data: data parameters and checksum.

The header and data sections contain a checksum to guarantee the message
packet transfer. The header checksum is required in the Group Talk multidrop
protocol. Each slave will monitor the serial link to determine if the destination
field matches their device ID. For messages destined for another slave device, the
other slave devices must now how many bytes (data parameters) to ignore before
they begin looking for the header section. See Section 15.7 for the details
regarding the checksum calculation.

NOTE: The upper 4-bits of the destination field are set to all 1s, which implies the
destination field has the following format: OxF<destination>. This is used
to indicate the start of a message.

Table 15-10. Host Processor to 8051 Processor RS232 Message Structure

Header Section Data Section
Destination Opcode Reserved Length CS Data Parameter CS
1 Byte 1 Byte 1 Byte 1 Byte 1 Byte (Length + 1) Bytes 1 Byte
100605C Conexant 15-15

Preliminary Information/Conexant Proprietary and Confidential

15.0 API: Microprocessor Communicator Channel Protocol CN8980

15.6 RS232 Serial Interface Protocol ZipWire2 HDSL2/SDSL Transceiver and Framer

15.6.2 RS232 Acknowledge Message Structure

The 8051 processor will acknowledge all valid RS232 messages (control and
status requests) with a 5-byte long Acknowledge message, as shown in
Table 15-11. The acknowledge status byte is described in Section 15.3.4.1.

Table 15-11. RS232 Acknowledge Response Message Structure

Acknowledge Response Packet

Destination Opcode ACK Status Length CS

1 Byte 1 Byte 1 Byte 1 Byte 1 Byte

The checksum value is calculated according to the formula described in
Section 15.7.

15.6.3 ZipWire2 8051 Processor to Host Processor Status Message Structure

For status request commands, the 8051 processor will send the variable length
results after the acknowledge response. The data results are only sent if the
acknowledge status byte was successful. Table 15-12 illustrates the message
structure format.

The destination and opcode fields match what the 8051 received. The number
of bytes is equal to the length +1, i.e., a length of 0 equals 1 byte and a length of
74 equals 75 bytes. The length does not include the checksum byte.

Table 15-12. 8051 Processor to Host Processor RS232 Message Structure

Acknowledge Response Section (Header) Data Section
Destination Opcode ACK Status CS Data Parameter(s) CS
1 Byte 1 Byte 1 Byte 1 Byte (Length + 1) Bytes 1 Byte

Control Command Response or invalid message

Status Command Response

The host processor first reads the API data length to determine the number of
the status bytes. The number of status bytes is then read. The final byte
(checksum) is then read to complete the message.

15-16 Conexant 100605C
Preliminary Information/Conexant Proprietary and Confidential

CNg980

15.0 API: Microprocessor Communicator Channel Protocol

ZipWire2 HDSL2/SDSL Transceiver and Framer

15.6.4 RS232 Message Transfer Protocol

The application sends a command to any of the devices in the system by
transmitting a message over the serial communication channel. Every command
that is correctly received and decoded by the 8051 processor is acknowledged by
sending a special acknowledge message back to the application. In response to a
status request command, the 8051 processor also sends a status response message
that contains the information requested.
The 8051 processor is guaranteed to acknowledge a received message within
specified time (see Section 15.1). The host processor will usually retransmit a
message that was not acknowledged within this time limit. The host processor
should send no new messages before the previous one was acknowledged unless
the time limit has been exceeded. When the 8051 processor receives a status
request command, it responds (after acknowledging the command) by sending a
status message to the host processor.
The following examples illustrate the 8051 processor sequence of events. In
the examples, all commands are sent to device number O (destination = 0).
Example 1: Set the _DSL_SYSTEM_CONFIG (0x01) to 0x48 (I1T1, In
Service, HTU-C).

Table 15-13. Example 1T—Incoming RS232 Message

15.6 RS232 Serial Interface Protocol

Header Section

Data Section

Destination Opcode Reserved Length CS Data 0 CS
0xFO 0x01 0x00 0x00 0x5B 0x48 OxE2
Table 15-14. Example 1T—Outgoing RS232 Message
Header Section
Destination Opcode ACK Length CS
0xFO 0x01 OxFF 0x00 0xA4

Example 2: Query the _DSL_STATUS (0x85); assume all return bytes are 0.

Table 15-15. Example 2—Incoming RS232 Message

Header Section

Data Section

Destination Opcode Reserved Length CS Data 0 CS
0xFO 0x85 0x00 0x00 0xDF 0x00 OxAA
Table 15-16. Example 2—O0utgoing RS232 Message
Header Section Data Section
Destination Opcode ACK Length CS Data 0 Data 6 CS
0xFO OxFF 0x07 0x27 0x00 0x00 OxAA
100605C Conexant 15-17

Preliminary Information/Conexant Proprietary and Confidential

15.0 API: Microprocessor Communicator Channel Protocol CN8980

15.6 RS232 Serial Interface Protocol ZipWire2 HDSL2/SDSL Transceiver and Framer

Example 3: Processor Busy during query the _DSL_STATUS (0x85). No data
results will be returned.

Table 15-17. Example 3—Incoming RS232 Message

Header Section Data Section
Destination Opcode Reserved Length CS Data 0 CS
0xFO 0x85 0x00 0x00 0xDF 0x00 OxAA

Table 15-18. Example 3—O0utgoing RS232 Message

Header Section
Destination Opcode ACK Length CS
0xFO 0x85 0x01 0x00 0xDE
15-18 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CN8980 15.0 API: Microprocessor Communicator Channel Protocol

ZipWire2 HDSL2/SDSL Transceiver and Framer 15.7 RS232 Checksum Function

15.7 RS232 Checksum Function

For every command sent by the host processor, a checksum function value is
calculated and sent as the last byte of the message. This value is calculated using
the following formula:

CS = (Byte #1) @ (Byte #2) @ (Byte #3) @ (Byte #N) @ (0 X AA)

Where @ denotes a bit-wise exclusive-OR operation, and 0xAA is the binary
byte 10101010.

The same rule is used by the 8051 processor to calculate the checksum byte of
the status message sent to the host processor.

15.7.1 RS232 Multi-Device System

In a multi-ZipWire2 device system (refer to Section 3.1), the RS232 interface can
only be connected to one Group Master device; therefore, the RS232 serial
protocol can only support up to 8 devices (master plus 7 slaves).

15.7.2 Group Talk Serial Interface Protocol

The Group Talk serial interface is very similar to the RS232 interface protocol.
The main difference is that the Group Master will broadcast an API command to
all the slaves. Only the targeted slave (based on the destination field) will respond
(acknowledge) to the Group Master.

NOTE: The customer should not have to be concerned with the Group Talk serial
protocol. The customer only must make sure the hardware signals are
connected correctly.

15.7.3 Boot RAM Software Download

The program download from the Group Master to the Group Slave(s) is done
through the Group Talk serial interface using API commands. When a slave
device is first powered on (or reset), the internal boot ROM of the ZipWire2
device supports a handful of API commands to download the program RAM.
When a slave device is in operational mode, these download API commands will
be ignored. This allows slave devices to be programmed without affecting the
other slave devices operating mode.

100605C Conexant 15-19
Preliminary Information/Conexant Proprietary and Confidential

15.0 API: Microprocessor Communicator Channel Protocol CN8980
15.7 RS232 Checksum Function ZipWire2 HDSL2/SDSL Transceiver and Framer

15-20 Conexant 100605C
Preliminary Information/Conexant Proprietary and Confidential

16.0 ZipWire2 API Configuration

The ZipWire2 chip set is extremely flexible and provides an extensive set of API
commands. This section describes tries to simplify the API command by
addressing which API commands are used in different applications.

16.1 APl Command Sequencing

Figure 16-1 illustrates the API command flow to configure the ZipWire2 device
for different applications. See Section 11.1.

100605C Conexant 16-1
Preliminary Information/Conexant Proprietary and Confidential

CN8980
ZipWire2 HDSL2/SDSL Transceiver and Framer

16.0 ZipWire2 API Configuration
16.1 API Command Sequencing

Figure 16-1. API Command Sequencing

I Program download.

Enable ZipWire2 device

Download
System Enable
v DSL System Configuration/Frame Structure Y Y
Standards-Based Frame Format | Framer Bypass Single Pair
Multi-rate — Multi-rate with
v Y v Bit Pump Only DSL Framer
OPTIS (HDSL2) or G.shdsl ATM over CAP
2B1Q (HDSL1) (Open CAP Frame
(1T1,2E1, etc.) Format)
Y Y

Y

Y

Set Training Mode

Set Training Mode

v

'

Set Pre-Act Mode

Set Pre-Act Mode

Y

1

Set Single Pair
Config. (DSL and

Set DSL Data

Set DSL Data

Set Single Pair
Config. (DSL and

and peripherals.
Set terminal type.

> Configure the
ZipWire2 device.

PCM Data Rate) Rate Rate PCM Data Rate)
DSL Framer
Time Slot Mapping
TP, RP, TH, RH
(Custom Mapping)
Y Y Y Y Y

Special Configuration API Commands

v Y Y

DSL Activation Test Modes
(End-to-End Startup)

GO Command; perform
startup, test mode, or
loopback with the
current configuration.

Loopbacks

Determine when
current and/or

test mode is complete.
Get critical status.

DSL Status

Get other non-critical
status and results.

Other Status and Query API Commands

100605_131

Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

16-2

CNg980

16.0 ZipWire2 API Configuration

ZipWire2 HDSL2/SDSL Transceiver and Framer

16.2.1 Scrambler/Descrambler Taps

16.2.2 CRC Tap

16.2 Indirect Configuration

16.2 Indirect Configuration

The following features of the device are configured indirectly based on other API

commands.

The DSL scrambler and descrambler taps are based on the HDSL1 and HDSL2
standards, as shown in Table 16-1. The terminal type and frame structure API
commands are used to determine the proper tap selection. The transmit scrambler
will match the far end’s receive descrambler.

Table 16-1. Scrambler/Descrambler Taps

Standard HTU-C to HTU-R HTU-R to HTU-C
HDSL1 %23 1 x5 4 1 %23 4 x18 4 1
HDSL2 %23 1 x5 4 1 %23 4 x18 4 1

The DSL CRC Tap is based on the HDSL.1 and HDSL2 standards, as shown in
Table 16-2. The frame structure API command is used to determine the proper tap
selection. The CRC polynomial is the same for both the HTU-C to HTU-R

direction and the HTU-R to HTU-C direction.

Table 16-2. CRC Tap

Standard CRC Tap
HDSL1 CRCB: x® + x + 1
HDSL2 CRCB: X8 + x + 1
100605C Conexant 16-3

Preliminary Information/Conexant Proprietary and Confidential

16.0 ZipWire2 API Configuration
16.2 Indirect Configuration

CN8980
ZipWire2 HDSL2/SDSL Transceiver and Framer

16.2.3 Sync Word

The sync word is based on the HDSL1 and HDSL2 standards, as shown in
Tables 16-3 and 16-4. The frame structure and DSL configuration API
commands, as well as the physical channel number 2T1 are used to determine the
proper sync word. The sync word is the same for both the HTU-C to HTU-R
direction and HTU-R to HTU-C direction.

The least significant bit is transmitted first.

The HDSL2 standards define a 10-bit sync word.

Table 16-3. Sync Word—HDSL2

HDSL2 Loop #1
G.shdsl TBD
T10PTIS TBD
The HDSL1 standards define a 14-bit sync word.
Table 16-4. Sync Word—HDSL1
HDSL1 Loop #1 Loop #2 Loop #3
E1 0x72 0x72 0x72
T 0x72 0x27 N/A
Single Pair 0x72 N/A N/A

16.2.4 Pair ID (Z-Bits)

The pair ID is based on the ETSI HDSL1 standards. The pair ID is the first three
bits of the Z-bit field, as shown in Table 16-5. The frame structure and DSL
configuration APl commands are used to determine the proper Pair ID. The
HTU-C defines the loop number pair ID, while the HTU-R matches the HTU-C.

Table 16-5. Pair ID of the Z-bit Field

Z-Bit 2 Z-Bit 1 Z-Bit 0
Loop 1 0 0 1
Loop 2 0 1 0
Loop 3 1 0 0
16-4 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CNg980

16.0 ZipWire2 API Configuration

ZipWire2 HDSL2/SDSL Transceiver and Framer

16.3 Single Pair Configuration

16.3 Single Pair Configuration

The following points are assumed:

» Each device (DSL channel) can be independently configured.
» Multiple devices can share PCM.

» There can be subgroups (multiple PCM buses) within a ZipWire2 group.
» There is no loop reversal or switching master loop.
* RCLK equals TCLK. DPLL is bypassed so switching the DPLL source is

unnecessary.

The single-pair-configuration API commands allow the application to

customize the DSL and PCM data rates. The single pair configuration has no

interaction with other devices, except that the devices share a common PCM bus.
More specifically, the ZipWire2 devices will not handle loop reversal or
switching of the master loop. The RCLK (PCM receive clock) must be sourced

from TCLK (PCM transmit clock). Single-pair-configuration API commands are

described in Table 16-6.

Table 16-6. Single Pair Configuration APl Commands

APl Command

Description

_SP_TOTAL_PCM_TSLOTS

Indicates the total number of PCM time slots available.
X=1.64

_SP_TOTAL_DSL_TSLOTS

Indicates the total number of DSL time slots available.
X=1..36

_SP_USED_TSLOTS

Indicates the number of time slots used by the PCM and
DSL.
X=1..MIN (TOTAL PCM, TOTAL DSL)

_SP_PCM_FBIT

0 = No F-Bit, E1, or Nx64
1 = F-Bit present, T1

_SP_STARTING_TIME SLOT

Specifies starting time-slot location in PCM data stream.

From these API commands, the ZipWire2 software can determine the

following information:

» Data rate: (Total number of DSL time slots x 64 k) + 16 k, where 16 k is
the fixed overhead data
* PCM and HDSL Mapping

100605C Conexant
Preliminary Information/Conexant Proprietary and Confidential

16-5

16.0 ZipWire2 API Configuration CN8980
16.3 Single Pair Configuration ZipWire2 HDSL2/SDSL Transceiver and Framer

16-6 Conexant 100605C
Preliminary Information/Conexant Proprietary and Confidential

17.0 ZipWire2 API Commands

A modular API-based command set allows a seamless initialization of the
ZipWire2 chip set. Once in operation, a comprehensive set of diagnostic and
testing commands assist in performance monitoring, and fault detection and
isolation tasks. The commands are divided into 2 categories:

Control Commands (0x00 to 0x7F)—control the operation modes of the
devices and set various parameters.

Status Request Commands (0x80 to 0xFF)—Inquire for status and
monitoring information from the device.

The Control and Status commands are then further divided:

Level 1 API commands

— Primary Control and Status commands for mainstream (standard)
applications.

Level 2 API commands

— Secondary Control and Status commands for custom applications (used
in conjunction with Level 1 commands). Also provides diagnostic and
debugging commands for use during development and in-service
diagnostics.

Level 3 API commands

— Low-Level API commands that are primarily used during in-house
development and characterization. Customers will typically not need to
use these commands.

Read/Write API commands

— The Read/Write Register commands allow the user to access any
register located in XDATA space. The bit pump and framer registers are
located in the 8051 XDATA space. These commands are primarily used
in a development or debugging environment.

T1/E1 Framer API commands

— Bt8370 T1/E1 Framer-specific APl commands.

EVM-Specific API commands

— EVM-Specific API commands, LEDs, DIP Switches, etc.

The C constant definitions are included in DSL_API. H.

100605C

Conexant 17-1

Preliminary Information/Conexant Proprietary and Confidential

17.0 ZipWire2 APl Commands

CN8980

17.1 APl Commands: Quick Reference

17.1 API Commands: Quick Reference

Table 17-1 lists a summary of the API commands.

Table 17-1. APl Command Summary (1 of 4)

ZipWire2 HDSL2/SDSL Transceiver and Framer

HEX Decimal Command (C Constant) In Length Out Length Page Ref
Control Commands
0 0 _DSL_RESET_SYSTEM 1 N/A 17-18
1 1 _DSL_SYSTEM_ENABLE 1 N/A 17-7
2 2 _DSL_AFE_CONFIG 1 N/A 17-42
3 3 _DSL_TRAINING_MODE 1 N/A 17-14
4 4 _DSL_SCR_DESCR_CONFIG 1 N/A 17-85
5 5 _DSL_PCM_MF_LEN 1 N/A 17-20
6 6 _DSL_SYSTEM_CONFIG 1 N/A 17-9
7 7 _DSL_STARTUP_MODE 1 N/A 17-16
8 8 _DSL_LOST_TIME_PERIOD 1 N/A 17-17
9 9 _DSL_LOOPBACK 1 N/A 17-47
A 10 _DSL_TRANSMIT_EXT_DATA 1 N/A 17-43
B 11 _DSL_ACTIVATION 1 N/A 17-11
C 12 _DSL_FORCE_DEACTIVATE 1 N/A 17-43
D 13 _DSL_TEST_MODE 1 N/A 17-44
E 14 _DSL_DATA_RATE 2 N/A 17-21
F 15 _BP_PREACTIVATION_MODE 1 N/A 17-15
10 16 _DSL_FR_PCM_CONFIG 1 N/A 17-19
11 17 _DSL_FR_HDSL_CONFIG 1 N/A 17-91
12 18 _DSL_PCM_CLK_CONF 1 N/A 17-54
13 19 _AFE_TX_GAIN 1 N/A 17-87
14 20 _BP_REVERSE_TIP_RING 1 N/A 17-85
15 21 _BP_BER_METER_STATE 1 N/A 17-49
16 22 _DSL_TX_ISO_PULSE 1 N/A 17-45
17 23 _DSL_TX_FIXED_PATT 1 N/A 17-46
18 24 _BP_ERLE_TEST_MODE 1 N/A 17-52
1B 27 _DSL_SINGLE_PAIR_CONFIG 4 N/A 17-20
21 33 _DSL_AUX_CLK_SELECT 1 N/A 17-54
17-2 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CNg980

17.0 ZipWire2 APl Commands

ZipWire2 HDSL2/SDSL Transceiver and Framer

Table 17-1. API Command Summary (2 of 4)

17.1 API Commands: Quick Reference

HEX Decimal Command (C Constant) In Length Out Length Page Ref
23 35 _DSL_TP_BER_STATE 1 N/A 17-58
24 36 _DSL_RP_BER_STATE 1 N/A 17-58
25 37 _DSL_PRBS_CONFIGURE 1 N/A 17-59
26 38 _DSL_CONST_FILL 1 N/A 17-60
27 39 _DSL_DBANK 3 N/A 17-61
2B 43 _DSL_AUTO_WATER_LEVEL 1 N/A 17-93
2C 44 _DSL_TX_WATER_LEVEL 2 N/A 17-93
2D 45 _DSL_RX_WATER_LEVEL 2 N/A 17-94
30 48 _DSL_TP_MAPPER_VALUE 65 N/A 17-62
31 49 _DSL_TP_MAPPER_WRITE 1 N/A 17-63
32 50 _DSL_RP_MAPPER_VALUE 65 N/A 17-63
33 51 _DSL_RP_MAPPER_WRITE 1 N/A 17-64
34 52 _DSL_TH_MAPPER_VALUE 65 N/A 17-65
35 53 _DSL_TH_MAPPER_WRITE 1 N/A 17-66
36 54 _DSL_RH_MAPPER_VALUE 65 N/A 17-66
37 55 _DSL_RH_MAPPER_WRITE 1 N/A 17-67
40 64 _DSL_CLEAR_ERROR_CTRS 1 N/A 17-68
41 65 _DSL_INJECT_CRC_ERROR 1 N/A 17-74
42 66 _DSL_CRC_FEBE_ERR_STATE 1 N/A 17-75
4E 78 _DSL_FR_TX_RESET 1 N/A 17-89
4F 79 _DSL_FR_RX_RESET 1 N/A 17-90
52 82 _DSL_MASK_INTR_HOST 1 N/A 17-92
53 83 _DSL_DOWNLOAD_START 2 N/A 17-35
54 84 _DSL_DOWNLOAD_DATA 1-75 N/A 17-36
55 85 _DSL_DOWNLOAD_END 1 N/A 17-36
56 86 _DSL_DOWNLOAD_SLAVE 1 N/A 17-37
58 88 _DSL_DPLL_CLOCK_GEN 5 N/A 17-95
60 96 _EOC_SET_DATABASE 1 N/A 17-32
61 97 _EOC_SET_MSG_CONTROL 2 N/A 17-33
62 98 _EOC_SET_PROPRIETARY_LEN 2 N/A 17-35
75 117 _DSL_WRITE_REG 3 N/A 17-97
100605C Conexant 17-3

Preliminary Information/Conexant Proprietary and Confidential

17.0 ZipWire2 APl Commands

CN8980

17.1 APl Commands: Quick Reference

Table 17-1. API Command Summary (3 of 4)

ZipWire2 HDSL2/SDSL Transceiver and Framer

HEX Decimal Command (C Constant) In Length Out Length Page Ref
76 118 _DSL_WRITE_AFE 2 N/A 17-98
7F 127 _TDEBUG_MASK 1 N/A —

Status Commands
80 128 _DSL_READ_CONTROL 1 — 17-38
82 130 _DSL_FAR_END_ATTEN 1 1 17-29
83 131 _DSL_NOISE_MARGIN 1 1 17-30
84 132 _DSL_TIMING_RECOVERY 1 2 17-84
85 133 _DSL_STATUS 1 8 17-22
86 134 _DSL_STATUS_STATIC 1 — 17-25
8A 138 _DSL_VERSIONS 1 11 17-26
8B 139 _DSL_CONFIG_PINS 1 3 17-40
8C 140 _DSL_TP_BER_RESULTS 1 5 17-55
8D 141 _DSL_RP_BER_RESULTS 1 5 17-57
8E 142 _DSL_SLM 1 1 17-83
8F 143 _DSL_STAGE_NUMBER 1 5 17-39
90 144 _DSL_AAGC_SETTING 1 1 17-41
91 145 _AFE_READ_TX 1 2 17-88
92 146 _BP_BER_RESULTS 1 10 17-50
93 147 _BP_ERLE_RESULTS 1 16 17-53
95 149 _DSL_CRC_FEBE_IN_PROGRESS 1 10 17-76
96 150 _DSL_CRC_ERR_INTERVAL 1 1 50 17-77
97 151 _DSL_CRC_ERR_INTERVAL 2 1 48 17-78
98 152 _DSL_CRC_ERR_INTERVAL 3 1 14 17-79
99 153 _DSL_FEBE_ERR_INTERVAL 1 1 50 17-80
9A 154 _DSL_FEBE_ERR_INTERVAL 2 1 48 17-81
9B 155 _DSL_FEBE_ERR_INTERVAL 3 1 14 17-82
9C 156 _DSL_OPER_ERR_CTRS 1 10 17-69
9D 157 _DSL_TIME 1 12 17-73
9E 158 _DSL_HDSL_PERF_ERR_CTRS 1 10 17-70
9F 159 _DSL_PCM_PERF_ERR_CTRS 1 8 17-71
A0 160 _DSL_READ_REG 3 — 17-98
Al 161 _DSL_READ_AFE 2 — 17-98
A2 162 _DSL_SYSTEM_PERF_ERR_CTRS 1 6 17-72
17-4 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CN8980 17.0 ZipWire2 APl Commands
ZipWire2 HDSL2/SDSL Transceiver and Framer 17.1 APl Commands: Quick Reference

Table 17-1. API Command Summary (4 of 4)

HEX Decimal Command (C Constant) In Length Out Length Page Ref

BO 176 _EOC_SEND_COMMAND 2 1 17-31

B1 177 _EOC_GET_MSG_STATUS 1 1 17-31

B2 178 _EOC_GET_DATABASE 1 — 17-32

B3 179 _EOC_READ_RX_QUEUE 1 2 17-34
100605C Conexant 17-5

Preliminary Information/Conexant Proprietary and Confidential

17.0 ZipWire2 APl Commands

CN8980

17.2 API Command Set Documentation Convention

ZipWire2 HDSL2/SDSL Transceiver and Framer

17.2 APl Command Set Documentation
Convention

The following conventions are used to document each of the API commands.

17.2.1 API Command Names

Incoming Data Parameter Description

A description of the overall command is provided first.

C constant Opcode #define as defined in DSL._APIL.H
Opcode Opcode value as defined in DSL_API.H
Type Opcode type: Control or Status

Incoming Bytes

The number of data parameters for the incoming message.

The documentation uses a value of 1 to imply 1 byte. The
maximum is 75 bytes.

Outgoing Bytes | The number of data parameters for the outgoing message. The

documentation uses a value of 1 to imply 1 byte. The
maximum is 75 bytes.

For control commands, this value will be ‘None’ because
there is no data sent back to the host.

Byte # Content Description
1 Byte1 Name Incoming byte 1 description
2 Byte2 Name Incoming byte 2 description
N ByteN Name Incoming byte N description
Outgoing Data Parameter Description
Byte # Content Description
1 Byte1 Name Outgoing byte 1 description
2 Byte2 Name Outgoing byte 2 description
N ByteN Name Outgoing byte N description
NOTE: The Outgoing Data Parameter description is only provided for Status
commands.
If required, addition descriptions for the incoming and outgoing data
parameters are provided at the end of the command.
17-6 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CNg980

17.0 ZipWire2 APl Commands

ZipWire2 HDSL2/SDSL Transceiver and Framer

17.3 Level 1 API Commands

17.3 Level 1 APl Commands

17.3.1 DSL System Enable

This command enables or disables the ZipWire2 System and provides
information about the supported peripherals. This command matches the START
configuration pins.

This command will the cause the ZipWire2 device to deactivate any training
or test modes and transition to the Configure ZipWire2 state (see Figure 12-1).
The ASM and DSL Loop Manager will be disabled.

C constant _DSL_SYSTEM_ENABLE
Opcode 0x01
Type Control

Incoming Bytes | 1
Outgoing Bytes | None

Incoming Data Parameter Description

Byte # Content Description
1 System State See the bit-field description below. Default value = START pins.
Bit 7:6 Bit 5 Bit 4:3 Bit 2 Bit 1 Bit 0
Unused | Reserved | Terminal Type E1/T1 Framer Present EVM Dip Switch and LEDs Present DSL System State

Terminal Type

Sets the DSL terminal type. In any operational ZipWire2 system, one side of one
ZipWire2 device must be configured as an HTU-C and the other side of the
ZipWire2 device must be configured as an HTU-R. The terminal type determines
the activation procedure, timing recovery, scrambler and descrambler taps, and
more.

In a multi-pair system, each bit pump on a board may be individually set as an
HTU-C or HTU-R. However, most applications configure all bit pumps on a
given board to the same terminal type.

Value Option Description C Constant
0x00 HTU-C Central Office Terminal _DSL_HTUC
0x01 HTU-R Remote Terminal _DSL_HTUR
0x02 REG-C Regenerator HTU-C _DSL_REGC
0x03 REG-R Regenerator HTU-R _DSL_REGR
100605C Conexant 17-7

Preliminary Information/Conexant Proprietary and Confidential

17.0 ZipWire2 APl Commands

CN8980

17.3 Level 1 APl Commands

E1/T1 Framer Present

EVM Dip Switch and LED

Present

DSL System State
(Out-of-Service)

ZipWire2 HDSL2/SDSL Transceiver and Framer

NOTE: If the current ROM-build does not support the desired terminal type
setting, the ZipWire2 device will be forced to use whatever terminal type
the ROM-build does support. For example, assume a ROM-build that only
contains the HTU-C code and the user selects the terminal type to be
HTU-R. The software will force the terminal type to be HTU-C.

Specifies whether the internal 8051 controls the Bt8370 E1/T1 Framer. This bit is
provided for the Evaluation Module (EVM) operation. When enabled, the E1/T1
Framer is configured to basic transparent mode.

Customers may add the Bt8370 E1/T1 Framer (or equivalent) to their system.
Customers could also customize the Bt8370 E1/T1 Framer operation to match
their specific requirements, but this would require the customer to modify the
internal 8051 code.

0 =E1/T1 Framer not present

1 = E1/T1 Framer present

Specifies whether the internal 8051 controls the EVM dip switches and LEDs.
This bit is provided for the EVM operation. Customers may add this circuitry to
their system. Customers may also customize this circuitry to match their specific
requirements, but this requires the customer to modify the internal 8051 code.

0 =EVM Dip Switch and LED not present

1 = EVM Dip Switch and LED present

This command enables or disables the ZipWire2 Transceiver.

Setting the ZipWire2 State to Off (Out-of-Service) puts the chip in a
power-down mode. Any further control and status commands issued to this bit
pump (other than Bit Pump On/Off) returns the Not Available Acknowledge
Status (see Table 15-5).

Setting the ZipWire2 State to On (In-Service) puts the system in a default
configuration. Other API commands must then be issued to properly configure
the device.

17-8

Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CNg980

17.0 ZipWire2 APl Commands

ZipWire2 HDSL2/SDSL Transceiver and Framer

17.3.2 DSL System Configuration

This command configures the ZipWire2 basic mode of operation. This command
will preconfigure other API commands, such as the DSL and PCM data rate, DSL
line code, training mode, and so on. See Section 16.1 for descriptions of how the
ZipWire2 is configured for different applications.

This command causes the ZipWire2 device to deactivate any training and test
modes, and transition to the Configure ZipWire2 state (see Figure 12-1). The
device is configured based on the settings. The ASM and DSL Loop Manager

17.3 Level 1 API Commands

will be disabled.
C constant _DSL_SYSTEM_CONFIG
Opcode 0x06
Type Control
Incoming Bytes | 1
Outgoing Bytes | None

Incoming Data Parameter Description

Byte # Content Description
1 DSL Configuration See the bit field description below. The configuration pins determine the default
value.
Bit 7:4 Bit 3:0
DSL Configuration Frame Structure
100605C Conexant 17-9

Preliminary Information/Conexant Proprietary and Confidential

17.0 ZipWire2 APl Commands CN8980

17.3 Level 1 API Commands ZipWire2 HDSL2/SDSL Transceiver and Framer
DSL Configuration = The DSL Configuration configures the ZipWire2 device.

For standard modes such as 1T1or 2E1, the software automatically determines
the DSL data rate, HDSL and PCM Mapping, and so on. See Section 16.0 which
describes how the ZipWire2 is configured.

The Single Pair Configuration mode will configure the system based on the
Single Pair API commands. The Single Pair configuration is used in multi-rate
with DSL Framer applications. See the Single Pair API commands.

The Framer Bypass mode configures the ZipWire2 for bit pump-only
operation; the DSL Framer is bypassed. The DSL Data Rate command is then
used to set the desired data rate.

Value Option Description C Constant

0x00 2T Configure for standard 2T1 mode. _DSL_2T1

0x01 2E1 Configure for standard 2E1 mode. _DSL_2E1

0x02 3E1 Configure for standard 3E1 mode. _DSL_3ET1

0x03 Framer Bypass |Configure for DSL Framer Bypass mode. _DSL_FRAMER_BYPASS

0x04 1T1 Configure for standard 1T1 mode. _DSL_1T1

0x05 1E1 Configure for standard 1E1 mode. _DSL_1E1

0x06 Single Pair Configure for Single Pair Configuration mode. _DSL_SINGLE_PAIR
0x07-0x0F Reserved — —

Frame Structure (Frame

The frame structure determines the relative position of the payload and overhead

Format) bits (sync word, EOC, Indicator, etc.) within the DSL frame. See Chapter 14.0 for
more details of the various frame structures.
Value Option Description C Constant
0x00 Framer Bypass The internal ZipWire2 Framer is disabled. The DSP serial _FRAMER_BYPASS_FORMAT
transmit and receive data are derived from the TXDAT,
RXDAT, and TX_RX_CLK pins.
0x01 HDSL1 Frame Uses the HDSL1 frame structure. _HDSL1_FRAME_FORMAT
0x02 HDSL2 Frame Uses the HDSL2 (OPTIS) frame structure. _HDSL2_FRAME_FORMAT
0x03 G.shdsl Frame Uses the G.shdsl frame structure. _GSHDSL_FRAME_FORMAT
0x05-0x0F [Reserved — Reserved
17-10 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CN8980 17.0 ZipWire2 APl Commands
ZipWire2 HDSL2/SDSL Transceiver and Framer 17.3 Level 1 APl Commands
17.3.3 DSL Activation
This command configures the DSL Activation.
C constant _DSL_ACTIVATION
Opcode 0x0B
Type Control
Incoming Bytes | 1
Outgoing Bytes | None
Incoming Data Parameter Description
Byte # Content Description
1 Activation Configuration See bit-field description below
Bit 7 Bit 6 Bit 5:4 Bit 3:2 Bit 1 Bit 0
Reserved Auto Tx Ext Activation Time-Out Startup Sequence Activation Request DSL Loop
Data Setting Source State Manager State

Auto Transmit External
Data

The Startup Sequence Source option (below) determines the source of the data
during startup. When the ZipWire2 is configured to transmit internal scrambled
1s, the ZipWire2 device can then be configured to automatically transmit external
payload, once the ASM reaches normal operation. Setting this bit will enable the
autotransmit external data feature.
Clearing this bit will disable the autotransmit external data feature. In certain
applications, the host processor may need to configure some other device before
the external payload is transmitted. In this scenario, the host would issue the
Transmit External Data command (see Section 17.3.2) once the ZipWire2
reached normal operation.

0 = Disabled
1 = Enabled

100605C

Conexant

Preliminary Information/Conexant Proprietary and Confidential

17-11

17.0 ZipWire2 APl Commands CN8980

17.3 Level 1 API Commands ZipWire2 HDSL2/SDSL Transceiver and Framer

Activation Time-Out This command sets the activation interval time-out setting.

Setting
Value Option Description C Constant
0x00 Fixed 30-Second The activation interval is set to 30 seconds. This _ACT_TIME_30SEC
option should be used when running at the standard
HDSL1 and HDSL?2 data rates (default value).
0x01 Reserved — —
0x02 Variable Number of The activation interval is based on data rate rather _ACT_TIME_VARIABLE
Symbols than fixed time. This option should be used in
multirate systems (see Table 17-2 for startup
times).
0x03 Reserved — —

The variable number of symbols option uses a formula that calculates the
number of symbols based on data rate. The absolute time is then calculated based
on the number of symbols. The formula is derived from the typical startup times.
The activation times are set to approximately twice the typical startup times. The
results of the formula correspond to the following times.

Table 17-2. HDSL1 Variable Rate Startup Times
Data Rate (kbps) Typical Startup Time(s) Activation Time-Out(s)
144 64.4 128.8
288 35.3 70.5
416 26.3 52.6
784 16.8 33.7
1,168 13.3 26.7
1,552 11.5 23.1
2,320 9.8 19.5
17-12 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CNg980

17.0 ZipWire2 APl Commands

ZipWire2 HDSL2/SDSL Transceiver and Framer 17.3 Level 1 APl Commands

Startup Sequence Source

This command selects the data source during the activation sequence. When using
the combination ZipWire2 DSP and DSL Framer, the internal framed option
should be used to conform to the HDSL1 or HDSL2 standards. In Framer Bypass
mode, the source of the data is dependent on the application.

The Internal Scrambled 1s option provides internally generated scrambled 1s
that may be used in a standalone transceiver implementation. This option does not
meet the standard activation requirements that require HDSL framing information
to be included in the activation sequences. When the internal scrambled 1s option
is specified, the _DSL_TRANSMIT_EXT_DATA command must be called when
the activation process is successfully completed.

The External Data Source option should only be used in conjunction with
Framer Bypass mode. The transceiver data source is provided from the TXDAT.
The transceiver will modify the magnitude bits to generate the necessary 2-Level,
4-Level, and so on codes. When using the external data source, either the Bit
Pump Scrambler (see Section 17.5.6) must be enabled or the data must be
scrambled by the external source.

Value Option

Description C Constant

0x00 Internal Framed During the activation training, the _INTERNAL_FRAMED_SOURCE

ZipWire2 provides the necessary
framed and scrambled data as defined
in the HDSL standards (default value).
This option should be used when the
DSL Framer is enabled.

0x01 Internal Scrambled 1s During the activation training, the _INTERNAL_ONES_SOURCE

ZipWire2 provides scrambled 1s. This
option should be used in Framer
bypass.

0x02 External Data Source During the activation training, the _EXTERNAL_DATA_SOURCE

ZipWire2 uses externally supplied
data. This option might be used in
Framer bypass applications that use a
custom external frame format.

0x03 Reserved

Activation Request State

DSL Loop Manager State

This command sets the activation request flag (ACTREQ). The activation request
controls the state of the DSL Loop Manager and Activation State Manager.
Setting this bit will enable the activation request and set the ASM state to the
Inactive state. Clearing this bit will disable the activation request.
The activation request should be disabled for certain diagnostic test modes and
loopbacks, primarily when trying to debug the DSL Framer section of the device.
The default is based on the START Configuration pins.

This command sets the DSL Manager Loop State (see Section 12.10). Setting this
bit will enable the DSL Loop Manager; clearing this bit will disable the DSL
Loop Manager.

The DSL Loop Manager should be disabled for certain diagnostic test modes
and loopbacks. When disabled, the bit pump and DSL Framer performs no
automatic functions. The host processor must control these devices through the
APL

The default is based on the START Configuration pins.

100605C

Conexant 17-13

Preliminary Information/Conexant Proprietary and Confidential

17.0 ZipWire2 APl Commands CN8980
17.3 Level 1 API Commands ZipWire2 HDSL2/SDSL Transceiver and Framer

17.3.4 Bit Pump Training Mode

This command configures the Bit Pump Training mode. This command is only
required when the DSL Frame Structure is set to Framer Bypass. This command
is properly configured when a standard configuration (i.e., HDSL1 2EI or
HDSL2 IT1) is selected. See Chapter 13.0 for more details.

This command will take effect on subsequent startups.

C constant _DSL_TRAINING_MODE
Opcode 0x03
Type Control

Incoming Bytes | 1
Outgoing Bytes | None

Incoming Data Parameter Description

Byte # Content Description
1 Training Mode See bit field description below.
Bit 7:4 Bit 3:0
DSL Line Code Training Mode

DSL Line Code Sets the desired final DSL line code. The automatic mode will select the
appropriate line code based on the training mode.

Value Mode Line Code C Constant
0x00 3-Bit Trellis Coded 16 PAM (OPTIS/G.shdsl) _16PAM_CODED_LINE
0x01 2-Bit Trellis Coded 8 PAM _8PAM_CODED_LINE
0x02 1-Bit Trellis Coded 4 PAM _4PAM_CODED_LINE
0x03 Invalid — —
0x04 4-Bit Uncoded 16 PAM _16PAM_UNCODED_LINE
0x05 3-Bit Uncoded 8 PAM _8PAM_UNCODED_LINE
0x06 2-Bit Uncoded 4 PAM (2B1Q) _4PAM_UNCODED_LINE
0x07 1-Bit Uncoded 2 PAM (startup only) _2PAM_UNCODED_LINE

0x07-0x0E — — —
0xOF Automatic — —
17-14 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CNg980

17.0 ZipWire2 APl Commands

ZipWire2 HDSL2/SDSL Transceiver and Framer

Training Mode

17.3 Level 1 APl Commands
Sets the desired bit pump training mode.
Value Training Mode C Constant
0x00 2B1Q _2B1Q_TRAINING
0x01 HDSL2 OPTIS _OPTIS_TRAINING
0x02 G.shdsl _GSHDSL_TRAINING
0x03 IDSL _IDSL_TRAINING
0x04 ADSL —
0x05 2B1Q ZipStart —
0x07-0x0F Reserved —

noTE: The ADSL and 2B1Q ZipStart are provided to be compatible with the
existing ZipWirel AutoBaud; these modes are not supported by the

CN8980.

17.3.5 DSL Pre-Activation Mode

This command configures the pre-activation mode. This command will take
effect on subsequent startups.

C constant _BP_PREACTIVATION_MODE
Opcode 0x0F

Type Control

Incoming Bytes | 1

Outgoing Bytes | None

Incoming Data Parameter Description

Byte # Content Description
1 Pre-Activation Mode See bit-field description below.
Bit 7:4 Bit 3:0
Reserved Pre-Activation Mode
100605C Conexant 17-15

Preliminary Information/Conexant Proprietary and Confidential

17.0 ZipWire2 APl Commands

CN8980

17.3 Level 1 APl Commands

Pre-Activation Mode

ZipWire2 HDSL2/SDSL Transceiver and Framer

Sets the desired pre-activation mode.

Value Pre-Activation Mode C Constant
0x00 None _NO_PREACT
0x01 Automatic _AUTOMATIC_PREACT
0x02 AutoBaud _AUTO_BAUD_PREACT
0x04 G.hs _GHS_PREACT
0x05—-0x0F Reserved —
17.3.6 DSL Startup Mode
This command configures the DSL Startup Mode.
C constant _DSL_STARTUP_MODE
Opcode 0x07
Type Control
Incoming Bytes | 1
Outgoing Bytes | None
Incoming Data Parameter Description
Byte # Content Description
1 DSL Startup Mode See bit-field description below
Bit7 Bit 6 Bit 5:2 Bit 1:0
BP Auto Tip/Ring ZipStartup Reserved Nonstandard Startup

17.3.6.1 Bit Pump Auto
Tip/Ring Reversal

The Auto Tip/Ring Reversal is used to enable and disable the bit pump automatic
tip/ring detection and reversal of the line. When set (enabled), the bit pump
activation procedure will automatically detect and correct tip/ring reversal. In
order for tip/ring reversal to work, the user must set the internal scrambled 1s
during activation (Section 17.3.3), enable the scrambler and descrambler, and
have a ZipWirel or ZipWire2 part on the far-end configured in the same fashion
(none of these are part of this API option). Clearing this bit will disable the bit
pump auto tip/ring feature.

NOTE: This command should only be used while operating in legacy 2B1Q mode
in combination with the DSL Framer Bypass mode.

0 = Disable

1 = Enable

17-16

Conexant

Preliminary Information/Conexant Proprietary and Confidential

100605C

CNg980

17.0 ZipWire2 APl Commands

ZipWire2 HDSL2/SDSL Transceiver and Framer 17.3 Level 1 APl Commands

ZipStartup

Nonstandard Startup

Enable or disable the ZipStartup feature. When enabled, the bit pump algorithm
will support the Zip Start code, i.e., save coefficients during the activation, allow
coefficients to update during normal operation, and so on. Disabling the ZipStart
will force all activation attempts in the cold mode.

NOTE: This command is only supported for legacy 2B1Q applications.
0 = Disable
1 = Enable

In a system where both terminals use the ZipWire2 bit pump, several activation
operations can be performed more efficiently relative to the standard
requirements. Setting this bit will enable the nonstandard activation procedure;
clearing this bit will use the standard activation procedure.

17.3.7 LOST Time (Tsilent) Period

An on-chip timer is restarted when a Loss Of Signal (LOS) condition is detected.
When this timer reaches a predefined value, the LOST status bit is turned ON.
Once turned on, the status bit will not reset (even if there is no longer an LOS
condition). The LOST indication is cleared only when an Activate or Reset
command is issued.

The LOST mechanism is active only in the deactivated state. Thus, during
activation or normal operation, the LOST status is never set. This implementation
is in correspondence with the TIEI/ETSI HDSL activation state diagrams. The
LOST time interval is programmable in the range 0-25.5 seconds with a
resolution of 1/10 second. The value of the LOST status bit may be checked using
the bit pump status command.

NoTE: Tsilent (HDSL2) is synonymous with LOST (HDSL1).

C constant _DSL_LOST_TIME_PERIOD
Opcode 0x08
Type Control

Incoming Bytes | 1
Outgoing Bytes | None

Incoming Data Parameter Description

Byte # Content Description

1 LOST Time Period 1-byte unsigned integer X. The LOST time period is set to X / 10 seconds.

Default Value: 10 = 1 second.

100605C

Conexant 17-17

Preliminary Information/Conexant Proprietary and Confidential

17.0 ZipWire2 APl Commands

CN8980

17.3 Level 1 APl Commands

17.3.8 DSL Reset

ZipWire2 HDSL2/SDSL Transceiver and Framer

This command issues a reset to the DSL system.
The software reset will set the DSL Reset flag (see Table 15-13). The program
will reconfigure the device to their default values (based on the configuration

pins). Any custom configuration commands must be reissued. The software reset
can be issued to any ZipWire2 device.
The hardware reset can only be issued to the Group Master. The hardware

reset will toggle the RESET_OUT pin forcing all other devices (including itself)

to reset. Each device will then reperform the download procedure.

C constant _DSL_RESET_SYSTEM
Opcode 0x00
Type Control

Incoming Bytes | 1

Outgoing Bytes | None

Incoming Data Parameter Description

Byte # Content Description
1 Reset 0x00 = Software reset (_DSL_SW_RESET)
0x01 = Hardware reset (_DSL_HW_RESET)
17-18 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CN8980
ZipWire2 HDSL2/SDSL Transceiver and Framer

17.0 ZipWire2 APl Commands
17.3 Level 1 API Commands

17.3.9 DSL Framer—PCM Configuration

This command configures the DSL Framer PCM block. This only applies when
the DSL Framer is enabled.

C constant _DSL_FR_PCM_CONFIG
Opcode 0x10
Type Control

Incoming Bytes | 1
Outgoing Bytes | None

Incoming Data Parameter Description

Byte # Content Description

1

PCM Configuration

See bit-field description below.

Bit 7:5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

Reserved

RSIG Enabled

PRA Enabled

F-Bit Present

DPLL Mode

PCM Float

Receive Signaling
Enabled

PRA Enabled TBD
F-Bit Present

Only applies in Point to Multi-point applications.

Indicates if the PCM Bus contains an extra F-Bit. Refer to Section 16.3 for details
about the Single Pair Configuration commands. Setting this bit indicates the PCM
bus does contain the F-Bit; then, the PCM bus is a (N x 64k + 1) serial stream.
Clearing this bit indicates the PCM bus does not contain an F-Bit; then, the PCM
bus is a (N x 64k) serial stream.

DPLL Mode Configure the PCM DPLL mode. The DPLL clock can operate in either
closed-loop or open-loop mode. The PCM Rx clock is typically sourced from the
DPLL clock.
0—DPLL operates in a closed loop to recover the PCM receive clock from the
master HDSL receive channel. During startup, the DPLL is switched to
open-loop mode to provide a stable PCM RCLK. Once startup is
completed, the DPLL is switched back to closed-loop mode.
1—DPLL always operates in open-loop mode. The DPLL clock provides a
fixed frequency. Use the DSL Framer clock generator to the desired DPLL

clock frequency (see Section 17.5.14).

PCM Float Configure the PCM Frame Format. When running in framed format, the sync bit

is used to indicate bit 0 of time slot 0 of frame 0. Unframed format allows

unframed or asynchronous payload mapping of PCM frames into HDSL frames.
0—Sync aligned with bit 0 of time slot 0.

I—Asynchronous sync versus data alignment.

Conexant 17-19
Preliminary Information/Conexant Proprietary and Confidential

100605C

17.0 ZipWire2 APl Commands CN8980
17.3 Level 1 API Commands ZipWire2 HDSL2/SDSL Transceiver and Framer

17.3.10 PCM Multi-Frame Length

This command sets the number of PCM frames per PCM multi-frame. The PCM
multi-frame is used to indicate bit 0 of time slot 0.

C constant _DSL_PCM_MF_LEN
Opcode 0x05
Type Control

Incoming Bytes | 1
Outgoing Bytes | None

Incoming Data Parameter Description

Byte # Content Description

1 Multi-Frame Length A value of 0 implies 1 frame. One frame is 125 us.
X=0...47 (1-48 frames or 125 us—6 ms)
Default is 6 ms.

17.3.11 Single Pair Configuration

This command configures the Single Pair Configuration parameters. Refer to
Section 16.3 for more details about the single pair configuration commands.

C constant _DSL_SINGLE_PAIR_CONFIG
Opcode 0x1B
Type Control

Incoming Bytes | 4
Outgoing Bytes | None

Incoming Data Parameter Description

Byte # Content Description

1 Number of PCM Time Total number of PCM time slots available. A value of 0 implies 1 time slot.
Slots X =0...255 (1-256 time slots)

2 Number of DSL Time Total number of DSL time slots available. A value of 0 implies 1 time slot.
Slots X=0...71 (1-72 time slots)

3 Number of Occupied Time Total number of occupied time slots available. A value of 0 implies 1 time slot.
Slots X =0...MIN (Total PCM, Total DSL) -1

4 Starting PCM Time Slot Indicates the location of the first time slot to extract from the PCM bus. The
Location ZipWire2 device will then sequential map the number of occupied time slots into

the DSL channel.

17-20 Conexant 100605C
Preliminary Information/Conexant Proprietary and Confidential

CNg980

17.0 ZipWire2 APl Commands

ZipWire2 HDSL2/SDSL Transceiver and Framer

17.3.12 DSL Data Rate

The Data Rate command sets the bit pump DSL Data Rate. This command should
only be used while operating in Framer Bypass Mode. When the DSL Framer is
enabled, the DSL Configuration (Section 17.2.1) or Single Pair API commands

will calculate the proper DSL data rate based on the number of HDSL bytes

17.3 Level 1 API Commands

available. The Data Rate parameter is determined by the following equation:

The supported range of X is 8—580 (or data rate = 64—4,640 kbps

X = Data Rate / 8,000

respectively).
C constant _DSL_DATA_RATE
Opcode 0x0E
Type Control

Incoming Bytes | 2

Outgoing Bytes | None

Incoming Data Parameter Description

Byte # Content Description
1 Data Rate (Low Byte) Contains the lower 8 bits of the Symbol Rate parameter X.
2 Data Rate (High Byte) Contains the upper 2 bits of the Symbol Rate parameter X.
100605C Conexant 17-21

Preliminary Information/Conexant Proprietary and Confidential

17.0 ZipWire2 APl Commands

CN8980

17.3 Level 1 APl Commands

17.3.13 DSL Status—Dynamic

This command queries the DSL Status registers. These status bytes provide
dynamic information about the ZipWire2 system.

ZipWire2 HDSL2/SDSL Transceiver and Framer

C constant _DSL_STATUS
Opcode 0x85
Type Status

Incoming Bytes | 1

Outgoing Bytes | 8

Incoming Data Parameter Description

Byte # Content Description
1 0 Set to 0 for future compatibility.
Outgoing Data Parameter Description
Byte # Content Description
1 STATUS_1 The STATUS_1 contains basic status of the system. The Host Processor should
only be required to poll this one status register to see if the system is
functioning, i.e., simple Go / No Go. The DSL status bit definitions are listed in
Table 17-3.
2 STATUS_2 Undefined
3 STATUS_3 Startup Failure Status bit definitions are listed in Table 17-4.
4 STATUS_4 DSL Framer Status bit definitions are listed in Table 17-5.
5 STATUS_5 Undefined
6 STATUS_6 Undefined
7 STATUS_7 Undefined
8 STATUS_8 Undefined
17-22 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CN8980 17.0 ZipWire2 APl Commands
ZipWire2 HDSL2/SDSL Transceiver and Framer 17.3 Level 1 APl Commands

Table 17-3. STATUS_1: DSL Status Bit Definitions

STATUS_1 Bit Description Bit Definition
0 LOS—Loss of Signal 0=No
1=Yes
1 LOST—Loss of Signal Timer (Tsilent) 0=No
1=Yes
2 LOSW—-Loss of Sync Word 0=No
1=Yes
3 LOSWT—Loss of Sync Word Timer (Tresync) 0=No
1=Yes
4 NMR OK—-Line Quality 0 = No (poor line quality)
1 =Yes (good line quality)
5 Fatal Error—need to poll other registers. One 0=No
example failed 3 consecutive attempts. 1=Yes
7-6 Activation Status 00 = Idle (_ASM_STAT_IDLE)

01 = Normal Operation (_ASM_STAT_SUCCESS)
10 = Deactivated (_ASM_STAT_DEACTIVATED)
11 = In-Progress (_ASM_STAT_IN_PROGRESS)

Table 17-4. STATUS_3: Startup Failure Status Bit Definitions

STATUS_3 Bit Description Bit Definition
3-0 Activation Failure—Result will be latched until next 0 = None
successful or failed startup attempt. 1 =Bad NMR

2 = Unable to Frequency Lock
3 = Failed Pre-Activation Startup
4 = Unable to detect Sync Word

5 = Failed Pair ID
5-4 Reserved. —
6 Failed 3 (or n) consecutive startup attempts. N is an 0=No
APl command. 1=VYes
7 Activation Time-Out. 0=No
1="Yes
100605C Conexant 17-23

Preliminary Information/Conexant Proprietary and Confidential

17.0 ZipWire2 APl Commands

CN8980

17.3 Level 1 APl Commands

Table 17-5. STATUS_4: DSL Framer Status Bit Definitions

ZipWire2 HDSL2/SDSL Transceiver and Framer

STATUS_4 Bit Description Bit Definition
0 DPLL Locked—only valid in DPLL Closed Loop mode. Set when the 0 = Not locked
DPLL Phase Error is less than (TBD). 1 = Locked, DPLL Stable
1 DPLL Error—only valid in DPLL Closed Loop mode. Set when the 0=No
DPLL Error exceeds (TBD). 1=Yes
2 Transmit Stuff Error. 0=No
1=Yes
3 Transmit FIFO Error. 0=No
1=Yes
4 Receive FIFO Error. 0=No
1=Yes
5 Loop Reversal. 0=No
1=Yes
7-6 HDSL Sync State. 00 = Out-of-Sync

01 = Acquiring Sync
10 = In-Sync
11 = Losing Sync

Table 17-6. STATUS_8: Acknowledge Status (ISR) Bit Definitions

STATUS_8 Bit Description Bit(s) Definition

0 Receive EOC Message—this bit sets when the 8051 processor receives an EOC 0=No
message that needs to be forwarded to the host processor. 1=Yes

1 Activation State Manager (ASM) Transition—this bit sets when the ASM transitions 0=No
into the Activate State (normal operation) or when the ASM transitions from the 1=Yes
Pending State to the Deactivated State. The host reads the STATUS_1, Activation
Status bits to determine the link-up or link-down status.
In summary, this bit only provides link-down to link-up transition and link-up to
link-down transition.

7-2 Reserved. 0
17-24 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CN8980 17.0 ZipWire2 APl Commands
ZipWire2 HDSL2/SDSL Transceiver and Framer 17.3 Level 1 APl Commands

17.3.14 DSL Status—Static

This command queries the DSL Status registers.

C constant _DSL_STATUS_STATIC
Opcode 0x86
Type Status

Incoming Bytes | 1
Outgoing Bytes | ?

Incoming Data Parameter Description

Byte # Content Description

1 0 Set to 0 for future compatibility.

Outgoing Data Parameter Description

Byte # Content Description
1 Fatal Error Fatal Error Status bit definitions are listed in Table 17-7.
2 Transmit State Transmit State Status bit definitions are listed in Table 17-8.

Table 17-7. Fatal Error Bit Definitions

of Bits Description Bit Definition
0 Device failed power-on self-test. 0=No
1=Yes
3-1 Self Test Failure, only if Bit 0 is set. 0 = Failed Boot Load

1 = DSP Not Detected

2 = AFE Not Detected

3 = DSL Framer Not Detected
4 = Failed RAM/ROM test

7-4 Reserved —

Table 17-8. Tx State Bit Definitions

of Bits Description Bit Definition
3-0 Tx Level One of 16 transmit levels.
4 Tx State 0 =Tx OFF, 1 = Tx ON; see Tx level.
7-5 Reserved —
100605C Conexant 17-25

Preliminary Information/Conexant Proprietary and Confidential

17.0 ZipWire2 APl Commands CN8980
17.3 Level 1 API Commands ZipWire2 HDSL2/SDSL Transceiver and Framer

17.3.15 Versions

Requests the ZipWire2 hardware, software, and silicon version numbers.

C constant _DSL_VERSIONS
Opcode 0x8A
Type Status

Incoming Bytes | 1
Outgoing Bytes | 11

Incoming Data Parameter Description

Byte # Content Description

1 0 Set to 0 for future compatibility.

Outgoing Data Parameter Description

Byte # Content Description

1 Major Software Version 1-byte unsigned integer field returning the major software version.

2 Minor Software Version 1-byte unsigned integer field returning the minor software version.

3 Internal Software Version 1-byte unsigned integer field returning internal software version. Used during

S/W development. This field will return a 0 for all official releases.

4 Compiler Build Option Low byte of 2-byte field containing the compiler build option, see below.
Low

5 Compiler Build Option Upper byte of the compiler build option field.
High

6 DSP Silicon Type 1-byte unsigned integer field returning the DSP silicon type.

7 DSP Silicon Revision 1-byte unsigned integer field returning the DSP silicon revision.

8 AFE Silicon Type 1-byte unsigned integer field returning the AFE silicon version type.

9 AFE Silicon Revision 1-byte unsigned integer field returning the AFE silicon revision.

10 DSL Framer Silicon Type 1-byte unsigned integer field returning the DSL Framer silicon type.

11 DSL Framer Silicon 1-byte unsigned integer field returning the DSL Framer silicon revision.
Revision

17-26 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CN8980 17.0 ZipWire2 APl Commands

ZipWire2 HDSL2/SDSL Transceiver and Framer 17.3 Level 1 APl Commands
DSP Silicon Type
Byte Value Type
0x00 Bt8952
0x01 Bt8960
0x02 Bt8970
0x03 RS8973
0x80 CN8980

NOTE: The legacy 2B1Q devices are listed because this information may be
retrieved across the EOC channel.

DSP Silicon Revision
Byte Value Revision
0x00 Rev A
OxFF Rev B
OxFE Rev C
0x01 Rev D

AFE Silicon Type

Byte Value Type

14 CN8980

DSL Framer Silicon Type
Byte Value Type
0 CN8980
255-1 Undefined
100605C Conexant 17-27

Preliminary Information/Conexant Proprietary and Confidential

17.0 ZipWire2 APl Commands

CN8980

17.3 Level 1 APl Commands

A 1 in the bit-field denotes the compiler option is enabled.

ZipWire2 HDSL2/SDSL Transceiver and Framer

Compiler Build Option

Bit #

Description

o

HTU-C

HTU-R

Regenerator

HDSL2 (OPTIS)

HDSL1 (2B10Q)

DSL Framer

T1/E1 Framer

EVM Code

O |IN| oo™ |]wW | N =

Group Talk

TDEBUG

10-15

Reserved

17-28

Preliminary Information/Conexant Proprietary and Confidential

Conexant

100605C

CN8980 17.0 ZipWire2 APl Commands
ZipWire2 HDSL2/SDSL Transceiver and Framer 17.3 Level 1 APl Commands

17.3.16 Line Attenuation

Requests a value of the far-end signal attenuator. This value is based on
measuring the average far-end signal level after echo cancellation. The return
value is already adjusted to match the analog gain value (AAGC). The attenuation
is calibrated against a 150k Sine Wave.

For HDSL1, the far-end signal attenuation is calibrated for a 13.5 dBM
transmit power at the far-end.

For HDSL2, the far-end signal attenuation is calibrated for a 17.0 dBM
transmit power at the far-end.

C constant _DSL_FAR_END_ATTEN
Opcode 0x82
Type Status

Incoming Bytes | 1
Outgoing Bytes | 1

Incoming Data Parameter Description

Byte # Content Description

1 0 Set to 0 for future compatibility.

Outgoing Data Parameter Description

Byte # Content Description

1 Attenuation 1-byte unsigned integer X (0 < X < 255) indicating the signal power
attenuation in units of 0.5 dB. For example, a value of 35 means a total cable
attenuation of 17.5 dB.

100605C Conexant 17-29
Preliminary Information/Conexant Proprietary and Confidential

17.0 ZipWire2 APl Commands

CN8980

17.3 Level 1 APl Commands

17.3.17 Noise Margin

ZipWire2 HDSL2/SDSL Transceiver and Framer

Requests a value of the Noise Margin of the Receiver (NMR). The noise margin is
defined as the maximum tolerable increase in external noise power that still
allows for BER of less than 1 x 107’ The value is based on measuring the average
absolute level of the noise at the input to the slicer.
The noise margin format matches the definition in the HDSL.1 and HDSL2

standards.
C constant _DSL_NOISE_MARGIN
Opcode 0x83
Type Status

Incoming Bytes | 1

Outgoing Bytes | 1

Incoming Data Parameter Description

Byte # Content Description
1 0 Set to 0 for future compatibility.
Outgoing Data Parameter Description
Byte # Content Description
1 NMR 1-byte signed integer X (=128 < X < 127) indicating the noise margin in units
of 0.5 dB. For example, a value of -4 means a noise margin of —2.0 dB.
17-30 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CN8980 17.0 ZipWire2 APl Commands
ZipWire2 HDSL2/SDSL Transceiver and Framer 17.3 Level 1 APl Commands

17.3.18 EOC Send Command

This command sends a standard EOC-request command across the EOC channel.
The message ID and destination are placed into the EOC transmit queue.

C constant _EOC_SEND_COMMAND
Opcode 0xB0O
Type Status

Incoming Bytes | 2
Outgoing Bytes | 1

Incoming Data Parameter Description

Byte # Content Description
1 Destination Address EQOC destination address (see Table 11-4).
2 Message ID EOC message ID (see Table 11-5).

Outgoing Data Parameter Description

Byte # Content Description

1 Tx Queue Index 1-byte field returning index into TxQueue[]. This allows the host to query the
status for a particular message.

17.3.19 EOC Get Message Status

This command gets the status of the EOC message. This command only queries
the status for messages placed into the transmit queue.

C constant _EOC_GET_MSG_STATUS
Opcode 0xB1
Type Status

Incoming Bytes | 1
Outgoing Bytes | 1

Incoming Data Parameter Description

Byte # Content Description

1 TxQueue Index TxQueue[] index returned from the EOC Send Command.

Outgoing Data Parameter Description

Byte # Content Description

1 Message Status 1-byte field returning index into the TxQueue[]. This allows the host to query the
status for a particular message.

100605C Conexant 17-31
Preliminary Information/Conexant Proprietary and Confidential

17.0 ZipWire2 APl Commands CN8980
17.3 Level 1 API Commands ZipWire2 HDSL2/SDSL Transceiver and Framer

17.3.20 EOC Set Datahase Data

This command fills in the EOC database contents.

C constant _EOC_SET_DATABASE
Opcode 0x60
Type Control

Incoming Bytes | 1+ L—depends on EOC command
Outgoing Bytes | None

Incoming Data Parameter Description

Byte # Content Description
1 Message ID EOC message ID (see Table 11-5).
2+L Database Contents Database information; refer to the specific EOC command for message format.

17.3.21 EOC Get Database Data

This command extracts the current contents of an EOC database.

C constant _EOC_GET_DATABASE
Opcode 0xB2
Type Status

Incoming Bytes | 1
Outgoing Bytes | L — depends on EOC command

Incoming Data Parameter Description

Byte # Content Description

1 Message ID EOC message ID (see Table 11-5).

Outgoing Data Parameter Description

Byte # Content Description

1-L Database Contents Database information; refer to the specific EOC command for message format.

17-32 Conexant 100605C
Preliminary Information/Conexant Proprietary and Confidential

CNg980

17.0 ZipWire2 APl Commands

ZipWire2 HDSL2/SDSL Transceiver and Framer

17.3.22 EOC Set Message Control

This command sets the message control to determine how each EOC message is

17.3 Level 1 API Commands

processed.
C constant _EOC_SET_MSG_CONTROL
Opcode 0x61
Type Control

Incoming Bytes | 2

Outgoing Bytes | None

Incoming Data Parameter Description

Byte # Content Description
1 Message ID EOC message ID (see Table 11-5).
2 Message Gontrol Message control for specified message ID.
100605C Conexant 17-33

Preliminary Information/Conexant Proprietary and Confidential

17.0 ZipWire2 APl Commands CN8980

17.3 Level 1 API Commands ZipWire2 HDSL2/SDSL Transceiver and Framer

17.3.23 EOC Read Receive Queue

This command reads the RxQueue to determine which EOC messages were
received. For each message received, two bytes are returned to the host processor:
source/destination address and message ID.

C constant _EOC_READ_RX_QUEUE
Opcode 0xB3
Type Status

Incoming Bytes | 1
Outgoing Bytes | 2 X number of messages received (N = number of messages)

NOTE: The host can determine the number of messages by using the following

formula:
N = (Data Length + 1) /2
Incoming Data Parameter Description
Byte # Content Description
1 0 Set to 0 for future compatibility
Outgoing Data Parameter Description
Byte # Content Description
1 Src/Dest Address #1 Source/destination address of first message in RxQueue
2 Message ID #1 Message ID of first message in RxQueue
3 Src/Dest Address #2 Source/destination address of second message in RxQueue
4 Message ID #2 Message 1D of second message in RxQueue
(Nx2)+1 Src/Dest Address #N Source/destination address of Nth message in RxQueue
(NX2)+2 Message ID #N Message ID of Nth message in RxQueue
17-34 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CN8980 17.0 ZipWire2 APl Commands
ZipWire2 HDSL2/SDSL Transceiver and Framer 17.3 Level 1 APl Commands

17.3.24 EOC Set Proprietary Length

This command sets the length of the EOC proprietary messages. This command
can be used to override the User-Defined Message and API over EOC proprietary

messages.
C constant _EOC_SET_PROPRIETARY_LEN
Opcode 0x62
Type Control

Incoming Bytes | 2
Outgoing Bytes | None

Incoming Data Parameter Description

Byte # Content Description
1 Message ID EOC proprietary message 1D, 0x70 to 0x78 and OxF0 to 0xF8 (see Table 11-5).
2 Proprietary Length Length of proprietary message; the maximum length is 75 bytes.

17.3.25 Download Start (Length)

This command is used to begin a new download. The size of program code
(length) is used to validate the download procedure. This command must be
issued before the Download Data command is issued.

Issuing the Download Start command in the middle of a download will reset
the download process.

NOTE: This command is only supported when the ZipWire2 device is in boot

code.
C constant _DSL_ DOWNLOAD_START
Opcode 0x53
Type Control

Incoming Bytes | 2
Outgoing Bytes | None

Incoming Data Parameter Description

Byte # Content Description
1-2 Length 2-byte value specifying the PRAM length. Low byte is programmed first.
100605C Conexant 17-35

Preliminary Information/Conexant Proprietary and Confidential

17.0 ZipWire2 APl Commands CN8980
17.3 Level 1 API Commands ZipWire2 HDSL2/SDSL Transceiver and Framer

17.3.26 Download Data

This command transfers the next block of the program data. All download packets
should have a data parameter length of 75 bytes until the last packet, which will
contain only the length of byte necessary to complete the download.

NOTE: This command is only supported when the ZipWire2 device is in boot code.

C constant _DSL_DOWNLOAD_DATA
Opcode 0x54
Type Control

Incoming Bytes | Upto 75 (L)
Outgoing Bytes | None

Incoming Data Parameter Description

Byte # Content Description

1-L Download Data Download data. Data is copied sequentially into the next PRAM location.

17.3.27 Download End (Checksum)

This command is used to indicate the end of the download. The download data
checksum is passed in so the 8051 can validate the download contents.

NOTE: This command is only supported when the ZipWire2 device is in boot code.

C constant _DSL_DOWNLOAD_END
Opcode 0x55
Type Control

Incoming Bytes | 1
Outgoing Bytes | None

Incoming Data Parameter Description

Byte # Content Description

1 Checksum Checksum of download data contents, does not include the length or checksum
bytes. The formula to calculate the checksum is listed in Section 4.6.11.3.

17-36 Conexant 100605C
Preliminary Information/Conexant Proprietary and Confidential

CNg980

17.0 ZipWire2 APl Commands

ZipWire2 HDSL2/SDSL Transceiver and Framer

17.3.28 Download Slave

This command is used to trigger the Group Master to download its PRAM
contents to the slave devices.

NOTE: This command is only supported by the Group Master when it is in
operational mode.

17.3 Level 1 API Commands

C constant _DSL_DOWNLOAD_SLAVE
Opcode 0x56
Type Control

Incoming Bytes | 1

Outgoing Bytes | None

Incoming Data Parameter Description

Byte #

Content

Description

1

Slave ID

Set to 0 for future compatibility.

100605C

Conexant

Preliminary Information/Conexant Proprietary and Confidential

17-37

17.0 ZipWire2 APl Commands
17.4 Level 2 APl Commands

CN8980
ZipWire2 HDSL2/SDSL Transceiver and Framer

17.4 Level 2 APl Commands

17.4.1 Read DSL Control Commands

The Read DSL Control Commands API command is a read-back of the current
setting for each of API control commands.

C constant _DSL_READ_CONTROL
Opcode 0x80
Type Status

Incoming Bytes | 1
Outgoing Bytes | Depends on control command

Incoming Data Parameter Description

Byte # Content Description

1 Control Gommand Return the configuration for the specified control command. Input range is
Opcode 0-127 (0x7F).

Outgoing Data Parameter Description

Byte # Content Description

N — Refer to the specific control command

17-38 Conexant 100605C
Preliminary Information/Conexant Proprietary and Confidential

CN8980 17.0 ZipWire2 APl Commands
ZipWire2 HDSL2/SDSL Transceiver and Framer 17.4 Level 2 APl Commands

17.4.2 Stage Number

Queries for the stage number of the various state machines.

C constant _DSL_STAGE_NUMBER
Opcode 0x8F
Type Status

Incoming Bytes | 1
Outgoing Bytes | 5

Incoming Data Parameter Description

Byte # Content Description

1 0 Set to 0 for future compatibility

Outgoing Data Parameter Description

Byte # Content Description
1 DSL Loop Manager Stage 1-Byte unsigned integer field returning the DSL Loop Manager stage number.
2 ASM Stage 1-Byte unsigned integer field returning the Activation State Manager (ASM)
stage number.
3 DSP Startup Stage 1-Byte unsigned integer field returning the DSP startup stage number.
4 DSL Framer Stage 1-Byte unsigned integer field returning the DSL Framer stage number.
5 DPLL Handler Stage 1-Byte unsigned integer field returning the DPLL Handler stage number.
100605C Conexant 17-39

Preliminary Information/Conexant Proprietary and Confidential

17.0 ZipWire2 APl Commands CN8980
17.4 Level 2 APl Commands ZipWire2 HDSL2/SDSL Transceiver and Framer

17.4.3 Read Configuration Pins

Requests the current START and DEVADR/BOOTOP configuration pins.

C constant _DSL_CONFIG_PINS
Opcode 0x8B
Type Status

Incoming Bytes | 1
Outgoing Bytes | 3

Incoming Data Parameter Description

Byte # Content Description

1 0 Set to 0 for future compatibility

Outgoing Data Parameter Description

Byte # Content Description
1 START Pins Request START configuration pins.
2 DEVADR and BOOTOP Request Device Address / BOOT Mode configuration pins (see Table 17-9).
Pins
3 Number of Devices Found Request the number of devices found within the group. This only applies to the
Group Master. A Group Slave will returna 1.

Table 17-9. DEVADR / BOOPOP Bit Definitions

Bit 7 Bit 6:4 Bit 3:0

Reserved DEAVADRJ[2:0] BOOTOP[3:0]

17-40 Conexant 100605C
Preliminary Information/Conexant Proprietary and Confidential

CN8980 17.0 ZipWire2 APl Commands
ZipWire2 HDSL2/SDSL Transceiver and Framer 17.4 Level 2 APl Commands

17.4.4 AFE Setting

Reads the current setting of the AFC and hybrid selection. The DSP startup
algorithm determines these results. The AFE value should only be read during
normal operation.

C constant _DSL_AFC_SETTING
Opcode 0x90
Type Status

Incoming Bytes | 1
Outgoing Bytes | 1

Incoming Data Parameter Description

Byte # Content Description

1 0 Set to 0 for future compatibility.

Outgoing Data Parameter Description

Byte # Content Description

1 AFE Value 1-Byte unsigned (see Table 17-10).

Table 17-10. AFE Bit Definitions

AFE Bit Description Bit(s) Definition
0 Hybrid Selection 0 = Hybrid 1
1 = Hybrid 2
3-1 Reserved 0
6-4 AFC setting corresponding to the 0=0.0dB
Absolute Gain (dB) setting 1=3.5dB
2=6.0dB
3=79dB
4=10.0dB
5=11.6dB
6=13.3dB
7=15.0dB
7 Reserved 0
100605C Conexant 17-41

Preliminary Information/Conexant Proprietary and Confidential

17.0 ZipWire2 APl Commands

CN8980

17.4 Level 2 APl Commands

ZipWire2 HDSL2/SDSL Transceiver and Framer

17.4.5 Analog Front End (AFE) Configuration
Configures the ZipWire2 AFE chip.

C constant _DSL_AFE_CONFIG
Opcode 0x02

Type Control

Incoming Bytes | 1

Outgoing Bytes | None

Incoming Data Parameter Description

Hybrid 2 Enable

Hybrid 1 Enable

Byte # Content Description
1 AFE Configuration See bit-field description below.
Bit 7:2 Bit 1 Bit 0
Reserved Hybrid 2 Enable Hybrid 1 Enable

Enables or disables the Hybrid 2 input.

0—Hybrid 2 Disabled
1—Hybrid 2 Enabled (Default)

Enables or disables the Hybrid 1 input.

0—Hybrid 1 Disabled
1—Hybrid 1 Enabled (Default)

17-42

Conexant

Preliminary Information/Conexant Proprietary and Confidential

100605C

CNg980

17.0 ZipWire2 APl Commands

ZipWire2 HDSL2/SDSL Transceiver and Framer 17.4 Level 2 APl Commands

17.4.6 DSL Force Deactivate

This command will force the ZipWire2 system to deactivate. If the DSL Manager
and Activation State Manager are enabled, the system will then reperform the
startup.

If in normal operation, the Activation State Manager will proceed through the
pending deactivated state. The force-deactivate flag is then cleared when the
Activation State Manager reaches the deactivated state. If the system is in the
process of a startup, the system will immediate fail that startup attempt by
asserting the activation time-out (Tact) flag.

This command allows the host processor to easily control the startup state
machine if the host processor detects a higher-level error.

C constant _DSL_FORCE_DEACTIVATE
Opcode 0x0C
Type Control

Incoming Bytes | 1
Outgoing Bytes | None

Incoming Data Parameter Description

Byte #

Content Description

1

Set to 1 for future compatibility.

17.4.7 Transmit External Data

This command should be used only when the Startup Sequence Source
(Section 17.3.3) is set to internal scrambled 1s (value 0x01). This command
should only be used while operating in Framer Bypass Mode.

When issued, this command causes the bit pump to start transmission of
externally supplied data symbols. This command should be issued upon the
successful completion of activation, which is determined by the application based
on bit pump status responses. The transmitted data should be supplied to the bit
pump prior to issuing this command.

This function is also controlled by autocommand.

C constant _DSL_TRANSMIT_EXT DATA
Opcode 0x0A

Type Control

Incoming 1

Bytes

Outgoing None

Bytes

Incoming Data Parameter Description

Byte #

Content

Description

1

0

Set to 0 for future compatibility.

100605C

Conexant 17-43

Preliminary Information/Conexant Proprietary and Confidential

17.0 ZipWire2 APl Commands

CN8980

17.4 Level 2 APl Commands

17.4.8 Test Modes

ZipWire2 HDSL2/SDSL Transceiver and Framer

Operates the bit pump in special test modes. For all test modes, the DSL. Manager
and Activation State Manager (ASM) will be disabled. To turn off any of the
special test modes, use the Test Mode command with an _EXIT_TEST_MODE
(0 value) parameter. Executing any test mode will be destructive to the current bit
pump link (bring the link down). All test modes require a complete activation
procedure to be repeated (assuming normal operation is required) after exiting the
test mode; this is accomplished by enabling the DSL Manager and ASM. When
exiting all these tests, the bit pump is initialized to a reset state and goes to the

IDLE State, where it awaits further commands.

NOTE: The duty cycle of the Isolated Pulses and Alternating Symbols Test Modes
are dependent on the meter interval register which defaults to 0OxTBD
(decimal TBD) when the test mode API is issued.

C constant _DSL_TEST_MODE
Opcode 0x0D

Type Control

Incoming Bytes | 1

Outgoing Bytes | None

Incoming Data Parameter Description

Byte #

Content

Description

1 Test Mode Option

See Table 17-11

Table 17-11. Test Mode Options (1 of 2)

Option

Description

Parameter (C Constant)

Exit Test Mode

Cancel current test mode.

0x00 (_EXIT_TEST_MODE)

Transmit Isolated Pulse

Transmit (repeatedly) an isolated pulse. This is
useful for testing the transmit pulse template. Use
the _BP_TX_ISOLATED_PULSE API command to
set the desired pulse code.

0x01 (_TM_TX_ISOLATED_PULSE)

Transmit Alternating Symbols

Transmit (repeatedly) an alternating symbols
pattern. Use the _BP_TX_ISOLATED_PULSE API
command to set the desired symbol pattern.

0x02 (_TM_TX_ ALTERNATE_SYM)

Transmit Fixed Pattern

Transmit (repeatedly) a fixed 8-bit pattern. Use the
_AFE_TX_FIXED_PATT API command to set the
desired pulse code.

0x03 (_TM_TX_FIXED_PATT)

Transmit AFE White Noise
Generator

Transmit a white noise source (fixed PRBS
pattern) generated by the ZipWire2 AFE.

0x04 (_TM_AFE_TX_WHITE)

Transmit AFE Sine Wave

Transmit a sine wave generated by the ZipWire2
AFE.

0x05 (_TM_AFE_TX_SINE)

Transmit Continuous
16-Level

Transmit continuous 16-level scrambled 1s. This
is useful for measuring PSD and transmit power.

0x09 (_SIXTEEN_LEVEL_SCR)

17-44

Conexant

100605C

Preliminary Information/Conexant Proprietary and Confidential

CN8980 17.0 ZipWire2 APl Commands

17.4 Level 2 API Commands

ZipWire2 HDSL2/SDSL Transceiver and Framer

Table 17-11. Test Mode Options (2 of 2)

Option

Description

Parameter (C Constant)

Transmit Continuous 8-Level

Transmit continuous 8-Level scrambled 1s. This is
useful for measuring PSD and transmit power.

0x0A (_EIGHT_LEVEL_SCR)

Transmit Continuous 4-Level

Transmit continuous 4-level scrambled 1s. This is
useful for measuring PSD and transmit power.

0x0B (_FOUR_LEVEL_SCR)

Transmit Continuous 2-Level

Transmit continuous 2-level scrambled 1s. This is
useful for measuring PSD and transmit power.

0x0C (_TWO_LEVEL_SCR)

Set Nominal Crystal
Frequency

Set frequency control word to its nominal (center)
frequency. This is useful for measuring the crystal
center frequency.

0x0D (_VCXO_NOMINAL)

Set Minimum Crystal
Frequency

Set frequency control word to its minimum
frequency. This is useful for measuring the crystal
pull range.

0XOE (_VCXO_MIN)

Set Maximum Crystal

Set frequency control word to its maximum

0x0F (_VCXO_MAX)

(see Section 17.4.14). Use the Section 17.4.15
API command to query the results.

Frequency frequency. This is useful for measuring the crystal
pull range.
ERLE Test Start the ERLE test with the current ERLE options 0x10 (_TM_ERLE)

17.4.9 Bit Pump Transmit Isolated Pulses Test Mode

This command selects the desired output level while in the Transmit Isolated
Pulses or Transmit Alternating Symbols test modes.
When the Transmit Alternating Symbols test mode is active, setting the
bit-level map to either +15 or —15 will set the alternating +15/—15 symbol pattern.
Default is 0x00 (Transmit Isolated —15 Pulse).

C constant _DSL_TX_ISO_PULSE
Opcode 0x16

Type Control

Incoming Bytes | 1

Outgoing Bytes | None

Incoming Data Parameter Description

Byte # Content Description
1 Isolated Pulse Option Set the Isolated Pulse level, i.e., +15, +13, and so on, or Alternating Symbol
level, i.e., +15/-15, +13/-13, and so on. See Section 13.1 for bit-level code
values.
100605C Conexant 17-45

Preliminary Information/Conexant Proprietary and Confidential

17.0 ZipWire2 APl Commands

CN8980

17.4 Level 2 APl Commands

ZipWire2 HDSL2/SDSL Transceiver and Framer

17.4.10 Bit Pump Transmit Fixed Pattern Test Mode

This commands sets the desired pattern while in the Transmit Fixed Pattern test

mode.
C constant _DSL_TX FIXED PATT
Opcode 0x17
Type Control
Incoming Bytes | 1
Outgoing Bytes | None
Incoming Data Parameter Description
Byte # Content Description
1 Fixed Pattern 8-hit value
17-46 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CNg980

17.0 ZipWire2 APl Commands

ZipWire2 HDSL2/SDSL Transceiver and Framer 17.4 Level 2 APl Commands

17.4.11 Loopbacks

Operates the bit pump in loopback modes (see Figure 11-2). To turn off any of the
loopback modes, use the loopback command with the _EXIT_LOOPBACK (0
value) parameter.

The AFE Analog and Bit Pump Transmit Loopbacks are destructive to the
current bit pump link, that is, will bring the link down since the ZipWire2 system
performs a mini-startup to adapt the DSP receiver section. The Normal Operation
and Activation Failure bits in the DSL status should be used to determine when
status of the loopback (similar concept to a normal startup). On exit of these
loopbacks, the bit pump is initialized to a reset state and goes to the idle state,
where it awaits further commands. A complete activation procedure should be
repeated if normal operation is required. The DSL Loop Manager is disabled
when performing these analog loopbacks.

The other loopbacks can be issued (or exited) at any time during normal
operation without affecting the bit pump link. Only the throughput data will be
affected to match the desired loopback condition. The software will automatically
handle swapping scrambler and descrambler taps on entry and exit of certain
loopbacks.

All loopbacks can be issued while in the Out-of-Service (Idle) state to
facilitate development and debugging of other devices in the system. For
example, the ZipWire2 can be placed in the _FR_PCM_ON_PCM_LB to develop
(and debug) code for the T1/E1 framer.

C constant _DSL_LOOPBACK
Opcode 0x09
Type Control

Incoming Bytes | 1
Outgoing Bytes | None

Incoming Data Parameter Description

Byte # Content Description

1 Loopback Option See Table 17-12

Table 17-12. Loopback Options (1 of 2)

Option

Description Parameter (C Constant)

Exit Loopback

Cancel current loopback. 0x00 (_EXIT_LOOPBACK)

Destructive to HDSL Link

Transmitting Analog
Loopback

The data is transmitted out the AFE line driver and 0x01 (_AFE_HYBRID1_LB)
looped back into the AFE hybrid input. The AFE 0x02 (_AFE_HYBRID2_LB)
Receiver inputs are bypassed.

Silent Analog Loopback

The data is looped back internally before the AFE line 0x03 (_AFE_SILENT_LB)
driver into the AFE A/D converter. The AFE Receiver
and Hybrid inputs are bypassed. The AFE Line Driver
is disabled.

100605C

Conexant 17-47

Preliminary Information/Conexant Proprietary and Confidential

17.0 ZipWire2 APl Commands

CN8980

17.4 Level 2 APl Commands

ZipWire2 HDSL2/SDSL Transceiver and Framer

Table 17-12. Loopback Options (2 of 2)

Option Description Parameter (C Constant)
AFE Transmit Digital The data is looped back internally before the AFE to 0x04 (_AFE_TX_DIG_LB)
Loopback Bit pump interface back into the AFE line driver. The

AFE Line Driver will output the proper levels. This
option is provided for internal testing only.

Bit Pump Transmit Loopback

The data is looped back internally before the Bit
Pump to AFE interface back into the Bit Pump AFE
serial inputs. The AFE line driver will still output the
proper levels. The AFE Receiver and Hybrid inputs
are bypassed.

0x05 (_BP_TX_LB)

Not Destructive to HDSL Link

Bit Pump Near Loopback

The data is looped back internally before the Bit
Pump DSP transmit section is looped back into the
DSL Framer HDSL receive section. When the DSL
Framer is present, the DSL Framer scrambler and
descrambler are set to use the same tap.

0x06 (_BP_DIGITAL_NEAR_LB)

Bit Pump Far Loopback

The data is looped back internally before the DSL
Framer HDSL receive section is back into the Bit
Pump DSP transmit section. The bit pump
scramblers will be enabled. The far-end scrambler
and descrambler must also be enabled.

0x07 (_BP_DIGITAL_FAR_LB)

DSL Framer HDSL on HDSL
Loopback

The data is looped back internally before the Bit
Pump DSP receive section back into the DSL Framer
HDSL transmit section. The bit pump scramblers will
be enabled and the DSL Framer scramblers will be
disabled.

0x08 (_FR_HDSL_ON_HDSL_LB)

DSL Framer PCM on HDSL
Loopback

The data is looped back internally before the DSL
Framer HDSL transmit section back into the Bit Pump
DSP receive section. The DSL Framer scrambler and
descrambler are set to use the same tap.

0x09 (_FR_PCM_ON_HDSL_LB)

DSL Framer HDSL on PCM
Loopback

The clock, data, and sync signals are looped back
internally before the DSL Framer PCM receive inputs
back into the DSL Framer PCM transmit inputs.

0x0A (_FR_HDSL_ON_PCM_LB)

DSL Framer PCM on PCM
Loopback

The clock, data, and sync signals are looped back
internally from the DSL Framer PCM transmits inputs
to the DSL Framer PCM receive inputs.

0x0B (_FR_PCM_ON_PCM_LB)

17-48

Conexant

100605C

Preliminary Information/Conexant Proprietary and Confidential

CNg980

17.0 ZipWire2 APl Commands

ZipWire2 HDSL2/SDSL Transceiver and Framer

17.4.12 Bit Pump BER Meter State

Activates or deactivates the internal Bit Pump BER Meter.

When activated, the bit pump is configured to transmit an internal scrambled
Is pattern. This command should only be called during the Bit Pump’s normal
operation. If the DSL Framer is present, then the Activation State Manager and
DSL Loop Manager will ignore all DSL Framer Out-of-Sync errors.

When deactivated, the bit pump is set to transmit external data, and the
transmit scrambler and receive descrambler are put back to their previous value
before the Activate BER Meter was issued. The Bit Pump BER Meter results are
unmodified so they can be still read.

17.4 Level 2 API Commands

NoTE: This command should only be used while operating in Framer Bypass
mode. It is recommended that the customer use the DSL Framer BER
Meter when the DSL Framer is present.

C constant _BP_BER_METER_STATE
Opcode 0x15
Type Control

Incoming Bytes | 1

Outgoing Bytes | None

Incoming Data Parameter Description

Byte # Content Description
1 Bit Pump BER State 0 = Deactivate the Bit Pump BER Meter (default)
1 = Activate the Bit Pump BER Meter
100605C Conexant 17-49

Preliminary Information/Conexant Proprietary and Confidential

17.0 ZipWire2 APl Commands CN8980
17.4 Level 2 APl Commands ZipWire2 HDSL2/SDSL Transceiver and Framer

17.4.13 Bit Pump BER Meter Results

Requests the BER Meter Status. Reading the BER Meter status commands while
the BER Meter is enabled does not effect the BER meter operation.

C constant _BP_BER_RESULTS
Opcode 0x92
Type Status

Incoming Bytes | 1
Outgoing Bytes | 10

Incoming Data Parameter Description

Byte # Content Description

1 0 Set to 0 for future compatibility

Outgoing Data Parameter Description

Byte # Content Description
1 BER Status 1-byte value indicating the BER Meter Status, see bit-field definitions below.
2-3 Number of Bit Errors 16-bit value specifying the number of bit-errors. The low byte is sent first
followed by the high byte.
4-5 Number of Meter 16-bit value specifying the number of meter intervals. The low byte is sent first
Intervals followed by the high byte.
6-9 Meter Interval Length 32-bit value specifying the meter interval length. The low byte is sent first.
10 Bits per Symbol 8-bit value specifying the number of bits per symbol.
NOTE(S):

1. 16-bit value = (high byte << 8) + (low byte)
2. 32-bit value = (byte 4 << 24) + (byte 3 << 16) + (byte 2 << 8) + (byte 1)

BER Status Bits

Status Bit Indicates Value=0 Value =1

0 BER Meter Enabled Not Active Active
7-1 Reserved — —

(Need to validate the formulas and assumptions for ZipWire2. TBD)
The following formulas are used to calculate the Avg BER and Elapsed Time:

4 _ #ofBitErrors
vgBER = -
#ofMeterintervals X MeterIntervalLength X BitsPerSymbol
ElapsedTime = #ofMeterIntervals X MeterIntervalLength X BitsPerSymbol
DataRate
17-50 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CN8980 17.0 ZipWire2 APl Commands

ZipWire2 HDSL2/SDSL Transceiver and Framer 17.4 Level 2 APl Commands
Variable How Derived
of Bit-Errors Read the # of Bit-Errors Low and High Byte API commands and build a 16-bit unsigned integer.
of Meter Intervals Read the # of Meter Intervals Low and High Byte API commands and build a 16-bit unsigned
integer.
Meter Interval Length Read the Meter Interval register and build a 32-bit unsigned integer. During normal operation,
these registers should always read TBD.
Data Rate Data Rate of the system, i.e., 2,320,000 or 784,000.
Bits per Symbol Specify the number of bits per symbol. This will be either 2, 3, or 4.
100605C Conexant 17-51

Preliminary Information/Conexant Proprietary and Confidential

17.0 ZipWire2 APl Commands CN8980
17.4 Level 2 APl Commands ZipWire2 HDSL2/SDSL Transceiver and Framer

17.4.14 ERLE Test Mode

This command activates the ERLE Test Mode. This command will disable the
DSL Manager. To abort the ERLE test mode before completion, use the
_DSL_TEST_MODE-_EXIT_TEST_MODE, API command.

noTE: The ERLE test is typically run with the transmitter set to 2-Level, and the
AAGC set to 0.0 dB.

C constant _BP_ERLE_TEST_MODE
Opcode 0x18
Type Control

Incoming Bytes | 1
Outgoing Bytes | None

Incoming Data Parameter Description

Byte # Content Description
1 ERLE Configuration See bit-field description below.
Bit 7 Bit 6:4 Bit 3 Bit 2:1 Bit 0
Reserved AGAIN[2:0] Reserved Transmit Level[1:0] Hybrid Selection
AAGC Bits Decimal Gain (dB)

000 0 0.0

001 1 35

010 2 6.0

011 3 7.9

100 4 10.0

101 5 11.6

110 6 13.3

111 7 15.0

Tx Level Bits Decimal Description
00 0 Set transmitter to 2-Level
01 1 Set transmitter to 4-Level
10 2 Set transmitter to 8-Level
11 3 Set transmitter to 16-Level
Hybrid Description
0 Select Hybrid 1
1 Select Hybrid 2
17-52 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CN8980 17.0 ZipWire2 APl Commands
ZipWire2 HDSL2/SDSL Transceiver and Framer 17.4 Level 2 APl Commands

17.4.15 ERLE Results

This command queries for the ERLE Test Mode results.

C constant _BP_ERLE_RESULTS
Opcode 0x93
Type Status

Incoming Bytes | 1
Outgoing Bytes | 16

Incoming Data Parameter Description

Byte # Content Description

1 0 Set to 0 for future compatibility.

Outgoing Data Parameter Description

Byte # Content Description
14 Noise 32-hit value specifying the background noise floor. The low byte is sent first.
5-8 SLM 32-bit value specifying the SLM value. The low byte is sent first.

9-12 FELM 32-bit value specifying the FELM value. The low byte is sent first.

13-16 SLM2 32-bit value specifying the SLM2 value. The low byte is sent first.

NOTE(S): 32-bit value = (byte 4 << 24) + (byte 3 << 16) + (byte 2 << 8) + (byte 1)

The Digital ERLE and Analog ERLE measurements are determined by the
following formulas:

B SLM
DERLE = 20><10g(F—ELM)
SLM?2
100605C Conexant 17-53

Preliminary Information/Conexant Proprietary and Confidential

17.0 ZipWire2 APl Commands

CN8980

17.4 Level 2 APl Commands

17.4.16 Auxiliary CLK Select

Selects the Auxiliary CLK output frequency.

ZipWire2 HDSL2/SDSL Transceiver and Framer

C constant _DSL_AUX_CLK_SELECT
Opcode 0x21
Type Control

Incoming Bytes | 1

Outgoing Bytes | None

Incoming Data Parameter Description

Byte #

Content

Description

1

Aux Clock Select

TBD

17.4.17 PCM Clock Configuration

Configures the PCM Transmit and Receive Clock Sources.

C constant _DSL_PCM_CLK_CONF
Opcode 0x12
Type Control

Incoming Bytes | 1

Outgoing Bytes | None

Incoming Data Parameter Description

Byte # Content Description
1 PCM Clock Configuration See bit-field description below.
Bit 7:6 Bit 5 Bit 4 Bit 3:2 Bit 1:0
Reserved RP_CLK_POL TP_CLK_POL RP_CLK_SOURCE TP_CLK_SOURCE
17-54 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CN8980 17.0 ZipWire2 APl Commands
ZipWire2 HDSL2/SDSL Transceiver and Framer 17.4 Level 2 APl Commands

RP_CLK_POL Receive PCM clock polarity.
0—Normal clock selected by RP_CLK_SOURCE (rising edge outputs, falling
edge inputs).
I—Inverted clock selected by RP_CLK_SOURCE (falling edge outputs, rising
edge inputs).

TP_CLK_POL Transmit PCM clock polarity.
0—Normal clock selected by 7P_CLK_SOURCE (rising edge outputs, falling
edge inputs).
1—Inverted clock selected by TP_CLK_SOURCE (falling edge outputs, rising
edge inputs).

RP_CLK_SOURCE Receive PCM clock source.
00—TPCLK input pin.
01—PEXTCLK input.
10—DPLL recovery clock.
11—Invalid, do not use.

TP_CLK_SOURCE Transmit PCM clock source.
00—TPCLK input pin.
01—PEXTCLK input.
10—DPLL recovery clock.
1 1—Invalid, do not use.

17.4.18 DSL Framer Transmit PCM BER Meter Results

Requests the DSL Framer Transmit PCM BER Meter Status. Reading the BER
Meter status commands while the BER Meter is enabled does not effect the BER
meter operation.

C constant _DSL_TP_BER_RESULTS
Opcode 0x8C
Type Status

Incoming Bytes | 1
Outgoing Bytes | 5

Incoming Data Parameter Description

Byte # Content Description

1 0 Set to 0 for future compatibility.

Outgoing Data Parameter Description

Byte # Content Description
1 BER Status 1-byte value indicating the BER Meter Status (see Table 17-13).
2-3 Number of Bit Errors 16-bit value specifying the number of bit-errors. The low byte is sent first

followed by the high byte.

4-5 Elapsed Time 16-bit value specifying the elapsed time in seconds. The low byte is sent first
followed by the high byte.

NOTE(S): 16-bit value = (high byte << 8) + (low byte).

100605C Conexant 17-55
Preliminary Information/Conexant Proprietary and Confidential

17.0 ZipWire2 APl Commands CN8980
17.4 Level 2 APl Commands ZipWire2 HDSL2/SDSL Transceiver and Framer

Table 17-13. DSL Framer BER Status Bits

Status Bit Description Bit Definition
1-0 Qualification Phase Status 00 - IDLE
01 - Complete
10 - Failed
11 - In Progress
3-2 Measurement Phase Status 00 - IDLE
01 - Complete
10 - Failed
11 - In Progress
7-4 Reserved —

The following formulas are used to calculate the Average BER:

#ofBitErrors
#ofBitsProcessed

AvgBER =
where:
When the DSL Framer is complete, use:

#ofBitsProcessed = BERScale

When the DSL Framer BER is in progress, use:

#MappedBERBitsperFrame
#BitsperFrame

#ofBitsProcessed = ElapsedTime X DataRate X

17-56 Conexant 100605C
Preliminary Information/Conexant Proprietary and Confidential

CNg980

17.0 ZipWire2 APl Commands

ZipWire2 HDSL2/SDSL Transceiver and Framer 17.4 Level 2 APl Commands

17.4.19 DSL Framer Receive PCM BER Meter Results

Requests the DSL Framer Receive PCM BER Meter status. Reading the BER
Meter status commands while the BER Meter is enabled does not effect the BER
meter operation.

NOTE: The description of the return results and formulas are described in the

Transmit PCM BER Meter results command.

C constant _DSL_RP_BER_RESULTS
Opcode 0x8D
Type Status

Incoming Bytes | 1

Outgoing Bytes | 5

Incoming Data Parameter Description

Byte # Content Description
1 0 Set to 0 for future compatibility.
Outgoing Data Parameter Description
Byte # Content Description
1 BER Status 1-byte value indicating the BER Meter status.
2-3 Number of Bit Errors 16-bit value specifying the number of bit errors. The low byte is sent first
followed by the high byte.
4-5 Elapsed Time 16-bit value specifying the elapsed time in seconds. The low byte is sent first

followed by the high byte.

NOTE(S): 16-bit value = (high byte << 8) + (low byte).

100605C

Conexant 17-57

Preliminary Information/Conexant Proprietary and Confidential

17.0 ZipWire2 APl Commands CN8980
17.4 Level 2 APl Commands ZipWire2 HDSL2/SDSL Transceiver and Framer

17.4.20 Transmit PCM BER State

Enable or Disable the DSL Framer Transmit PCM BER meter. The Transmit and
Receive PCM BER meters can be operated independently.

C constant _DSL_TP_BER_STATE
Opcode 0x23
Type Control

Incoming Bytes | 1
Outgoing Bytes | None

Incoming Data Parameter Description

Byte # Content Description

1 BER State 0 = Disable the Transmit PCM BER Meter. All results are unmodified so they can
be still read (Default Value).

1 = Enable the Transmit PCM BER meter. All results are reset to 0. Issuing the
enable option forces the BER meter to reperform the BER sync qualification
period. The error counter and elapsed time counters are reset to 0. The enable
option can be used as a BER meter reset.

17.4.21 Receive PCM BER State

Enable or disable the DSL Framer Receive PCM BER meter. The Transmit and
Receive PCM BER meters can be operated independently.

C constant _DSL_RP_BER_STATE
Opcode 0x24
Type Control

Incoming Bytes | 1
Outgoing Bytes | None

Incoming Data Parameter Description

Byte # Content Description

1 BER State 0 = Disable the Receive PCM BER meter. All results are unmodified so they can
still be read (Default Value).

1 = Enable the Receive PCM BER meter. All results are reset to 0. Issuing the
enable option forces the BER meter to reperform the BER sync qualification
period. The error counter and elapsed time counters are reset to 0. The enable
option can be used as a BER meter reset.

17-58 Conexant 100605C
Preliminary Information/Conexant Proprietary and Confidential

CNg980

17.0 ZipWire2 APl Commands

ZipWire2 HDSL2/SDSL Transceiver and Framer

17.4 Level 2 API Commands

17.4.22 PRBS Configure

Configure the PRBS generator to one of the selected patterns. The Transmit PCM
and Receive PCM share a common PRBS generator. This command is only
necessary when either the Transmit or Receive PCM BER Configure data is
sourced from the PRBS generator.

Issuing this command with the same data pattern parameter value will force a
reset on the PRBS polynomial.

C constant _DSL_PRBS_CONFIGURE
Opcode 0x25
Type Control

Incoming Bytes | 1
Outgoing Bytes | None

Incoming Data Parameter Description

Byte # Content Description
1 PRBS Configuration See bit-field description below. Default is 0x08.
Bit 7:6 Bit 5 Bit 4 Bit 3:0
BER Scale PRBS Invert PRBS Source PRBS Data Pattern

BER Test Interval (or number of bits) where bit errors are accumulated.
00—23! Bits.
01—228 Bits.
10—223 Bits.
11—2?! Bits.

PRBS Invert 0—PRBS Data Normal (not inverted)
1—PRBS Data Inverted
PRBS Source 0—Enable random pattern, data generated from Table 17-14
1—Enable fixed pattern, data generated from CONST_PATT register
100605C Conexant 17-59

Preliminary Information/Conexant Proprietary and Confidential

17.0 ZipWire2 APl Commands

CN8980

17.4 Level 2 APl Commands

Table 17-14. PRBS Data Pattern

ZipWire2 HDSL2/SDSL Transceiver and Framer

Data Pattern

Description

Parameter (C Constant)

All Os (SPACE) Outputs an all-0s pattern. 0x00 (_DSL_PRBS_ZERQ)
All 1s (MARK) Outputs an all-1s pattern. 0x01 (_DSL_PRBS_ONE)
1:1 Alternating Os and 1s. 0x02 (_DSL_PRBS_1_1)
261 Repeats every 26—1 (63) bits. The polynomial is X6 + x + 1. 0x03 (_DSL_PRBS_2_6)
291 Repeats every 291 (511) bits. The polynomial is x° + x* + 1. 0x04 (_DSL_PRBS_2_9)
2114 Repeats every 2''—1 (2047) bits. The polynomial is x'" + x2+ 1. 0x05 (_DSL_PRBS_2_11)
2151 Repeats every 2191 bits. The polynomial is x'® + x'4 + 1. 0x06 (_DSL_PRBS_2_15)
QRSS Repeats every 2201 bits with 14-bit zero suppression. The 0x07 (_DSL_PRBS_QRSS)
polynomial is x20 + x'7 + 1.
2234 Repeats every 2231 bits. The polynomial is x2° + x18 + 1. 0x08 (_DSL_PRBS_2_23)

NOTE(S): All-0s, All-1s, and alternating 0s and 1s set the PRBS source to the fixed pattern option and program the Fill Pattern
(Section 17.4.23) to the appropriate value.

17.4.23 Fill Pattern (CONST_FILL)

Sets the Fill Pattern (Constant Pattern) used when the Transmit or Receive PCM

BER Configure data is sourced from the Constant Pattern. The Constant Pattern

is a useful debugging tool because the PRBS can generate a known data pattern in
a given time slot to debug sync versus data alignment problems.

Writing the fill pattern while the device is in the PRBS mode will corrupt the

PRBS pattern.
C constant _DSL_CONST_FILL
Opcode 0x26
Type Control

Incoming Bytes | 1

Outgoing Bytes | None

Incoming Data Parameter Description

Byte #

Content

Description

1

Fill Pattern

1-byte field, least significant bit is sent first. The default is 0x55.

17-60

Conexant

100605C

Preliminary Information/Conexant Proprietary and Confidential

CNg980

17.0 ZipWire2 APl Commands

ZipWire2 HDSL2/SDSL Transceiver and Framer

17.4.24 Data Bank Contents

Sets the 3 Data Bank patterns.
Data Bank 1 is used to fill unused PCM and HDSL time slots in the PCM and

HDSL mappers. The default value is OxFF which provides an AIS (all 1s) code

for these unused time slots. The AIS pattern conforms to the HDSL standards.
The software current does not use Data Banks 2 and 3.

17.4 Level 2 API Commands

C constant _DSL_DBANK
Opcode 0x27
Type Control

Incoming Bytes | 3

Outgoing Bytes | None

Incoming Data Parameter Description

Byte # Content Description
1 Data Bank 1 1-byte field, least significant bit is sent first. The default is OxFF.
2 Data Bank 2 1-byte field, least significant bit is sent first. The default is 0x00.
3 Data Bank 3 1-byte field, least significant bit is sent first. The default is 0x55.
100605C Conexant 17-61

Preliminary Information/Conexant Proprietary and Confidential

17.0 ZipWire2 APl Commands CN8980
17.4 Level 2 APl Commands ZipWire2 HDSL2/SDSL Transceiver and Framer

17.4.25 Transmit PCM Mapper Value

The Transmit PCM Mapper Value command allows the user to control the data
going into the Transmit PCM FIFO. The Transmit PCM FIFO Mapper Table is
implemented with an 8 x 64 RAM that can accommodate up to 64 different table
entries. Each table entry can then process from 1-8 time slots, thus providing up
to 512 (8 x 64) time slots per Transmit PCM frame. The 64 table entries are
indexed from 0-63 and are stored in data RAM. The Transmit PCM Mapper
Write command is used to write the table from the data RAM to the device.

C constant _DSL_TP_MAPPER_VALUE
Opcode 0x30
Type Control

Incoming Bytes | 65
Outgoing Bytes | None

Incoming Data Parameter Description

Byte # Content Description
1 Starting Address 1-byte value indicating the table entry starting address. The starting address
must be set to 0 for the current silicon.
2-65 Table Entry See bit-field description below. The default is based on the system
configuration.
Bit 7:5 Bit4 Bit 3 Bit 2:0
Number of Time Slots (NTS) Reserved BER Enable Data Source

Number of Time Slots Indicates the number of time slots to be controlled in each table line (000 stands
for 1 and 111 stands for 8). The NTS should be consistent with the TP_TS_SIZE

register value, because the total number of bits being controlled in each line are
NTS * TP_TS_SIZE.

BEREN Enables the BER meter (towards PCM) for the specified time slots:
0—Discard
1—Enable BER meter

Data Source Specifies the Transmit PCM data source:
000—Disregards data
001—DATA from serial input TPDAT
010—PRBS generator (towards HDSL)
011—Assert TPINSEN pin and inserts data from TPINSDAT pin
100—Previous time slot
101-111—Not used

17-62 Conexant 100605C
Preliminary Information/Conexant Proprietary and Confidential

CN8980 17.0 ZipWire2 APl Commands
ZipWire2 HDSL2/SDSL Transceiver and Framer 17.4 Level 2 APl Commands

17.4.26 Transmit PCM Mapper Write

Writes the Transmit PCM Mapper table to the device. This should only be called
after the Transmit PCM Mapper table has been completely filled in. The
appropriate resets are issued.

C constant _DSL_TP_MAPPER_WRITE
Opcode 0x31
Type Control

Incoming Bytes | 1
Outgoing Bytes | None

Incoming Data Parameter Description

Byte # Content Description

1 0 Set to 0 for future compatibility.

17.4.27 Receive PCM Mapper Value

The Receive PCM Mapper Value command allows the user to control the data
going into the Receive PCM FIFO. The Receive PCM FIFO Mapper table is
implemented with an 8 x 64 RAM that can accommodate up to 64 different table
entries. Each table entry can then process from 1-8 time slots, thus providing up
to 512 (8 x 64) time slots per Receive PCM frame. The 64 table entries are
indexed from 0—63 and are stored in data RAM. The Receive PCM Mapper Write
command is used to write the table from the data RAM to the device.

C constant _DSL_RP_MAPPER_VALUE
Opcode 0x32
Type Control

Incoming Bytes | 65
Outgoing Bytes | None

Incoming Data Parameter Description

Byte # Content Description
1 Starting Address 1-byte value indicating the table entry starting address. The starting address
must be set to 0 for the current silicon.
2-65 Table Entry See bit-field description below. The default is based on the system configuration
Bit 7:5 Bit4 Bit 3 Bit 2:0
Number of Time Slots (NTS) Drop BER Enable Data Source
100605C Conexant 17-63

Preliminary Information/Conexant Proprietary and Confidential

17.0 ZipWire2 APl Commands

CN8980

17.4 Level 2 APl Commands

Number of Time Slots

DROP

BER EN

Data Source

ZipWire2 HDSL2/SDSL Transceiver and Framer

Indicates the Number of Time Slots (NTS) to be controlled in each table line (000
stands for 1 and 111 stands for 8). The NTS should be consistent with the
RP_TS_SIZE register value, because the total number of bits being controlled in
each line are NTS * RP_TS_SIZE.

When enabled, asserts RPDROP output to mark specific time slots in RPDAT.
When disabled and RPDAT _MODE = 1, RPDAT is three-stated.

0—Disable

1—Enable

Enables the BER meter (from HDSL) for the specified time slots.
0—Discard
1—Enable BER Meter

Specifies the Receive PCM data source for each time slot.
000—RX FIFO1
001—PRBS generator (towards PCM)
010—DATA BANK Register 1 (DBANK_1)
011—DATA BANK Register 2 (DBANK_2)
100—DATA BANK Register 3 (DBANK _3), or Signaling Table Enable
(When SIG_EN is setto 1)
101—Data from RPEXTDAT input (used in multi-pair configuration)
110—Not used
111—Not used

17.4.28 Receive PCM Mapper Write

Writes the Receive PCM Mapper table to the device. This should only be called

after the Receive PCM Mapper table has been completely filled in. The
appropriate resets are issued.

C constant _DSL_RP_MAPPER_WRITE
Opcode 0x33
Type Control

Incoming Bytes | 1

Outgoing Bytes | None

Incoming Data Parameter Description

Byte # Content Description

1

Set to 0 for future compatibility.

17-64

Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CNg980

17.0 ZipWire2 APl Commands

ZipWire2 HDSL2/SDSL Transceiver and Framer 17.4 Level 2 APl Commands

17.4.29 Transmit HDSL Mapper Value

The Transmit HDSL Mapper Value command allows the user to control the data
transmitted to the HDSL channel. The Transmit HDSL Payload Mapper table is
implemented with an 8x128 RAM that can accommodate up to 128 table entries.
Each table entry can then process from 1—4 time slots, thus providing up to 512 (4
x 128) time slots per Transmit HDSL frame. The 128 table entries are indexed
from 0—127 and are stored in data RAM. The Transmit HDSL Mapper Write
command is used to write the table from the data RAM to the device.

The Transmit HDSL Mapper value configures the current Transmit HDSL
Mapper table location with the specified data value. The table pointer is
incremented to the next table entry location.

C constant _DSL_TH_MAPPER_VALUE
Opcode 0x34
Type Control

Incoming Bytes | 65
Outgoing Bytes | None

Incoming Data Parameter Description

Byte # Content Description
1 Starting Address 1-byte value indicating the table entry starting address.
2-65 Table Entry See bit-field description below. The default is based on the system
configuration.
Bit 7:6 Bit 5:4 Bit 3 Bit 2:0
Reserved Number of Time Slots (NTS) Reserved Data Source

Number of Time Slots

Data Source

Indicates the number of time slots to be controlled in each table entry (00 stands
for 1 and 11 stands for 4). The NTS should be consistent with the TH_TS_SIZE

register value, because the total number of bits being controlled in each line are

NTS * TH_TS_SIZE.

Specifies the Transmit HDSL data source for each time slot.
000—Override/Insert Data Bank register 1 (DBANK_1)
001—Payload—Read data from Transmit FIFO
010—Reserved
011—If AUX_EN = 0—Override/Insert Data Bank register 2 (DBANK_2).

If AUX_EN = 1—Payload 3 (Auxiliary channels).
100-111—Reserved

100605C

Conexant 17-65

Preliminary Information/Conexant Proprietary and Confidential

17.0 ZipWire2 APl Commands CN8980
17.4 Level 2 APl Commands ZipWire2 HDSL2/SDSL Transceiver and Framer

17.4.30 Transmit HDSL Mapper Write

Writes the Transmit HDSL Mapper table to the device. This should be called only
after the Transmit HDSL Mapper table has been completely filled in. The
appropriate resets are issued.

C constant _DSL._TH_MAPPER_WRITE
Opcode 0x35
Type Control

Incoming Bytes | 1
Outgoing Bytes | None

Incoming Data Parameter Description

Byte # Content Description

1 0 Set to 0 for future compatibility.

17.4.31 Receive HDSL Mapper Value

The Receive HDSL Data Mapper Value command allows the user to control the
data coming from the HDSL channel. The Receive HDSL Payload Mapper table
is implemented with an 8x128 RAM that can accommodate up to 128 table
entries. Each table entry can then process from 1-4 time slots, thus providing up
to 512 (4 x 128) time slots per Receive HDSL frame. The 128 table entries are
indexed from 0-127 and are stored in data RAM. The receive HDSL Mapper
Write command is used to write the table from the data RAM to the device.

The receive HDSL Mapper value configures the current receive HDSL
Mapper table location with the specified data value. The table pointer is
incremented to the next table entry location.

C constant _DSL_RH_MAPPER_VALUE
Opcode 0x36
Type Control

Incoming Bytes | 65
Outgoing Bytes | None

Incoming Data Parameter Description

Byte # Content Description
1 Starting Address A 1-byte value indicating the table entry starting address.
2-65 Table Entry See bit-field description below. The default is based on the system configuration
Bit 7:6 Bit 5:4 Bit 3 Bit 2:0
Reserved Number of Time Slots (NTS) Reserved Data Source
17-66 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CN8980 17.0 ZipWire2 APl Commands
ZipWire2 HDSL2/SDSL Transceiver and Framer 17.4 Level 2 APl Commands

17.4.31.1 Number of Indicates the number of time slots to be controlled in each table line (00 stands for
Time Slots 1 and 11 stands for 4). The NTS should be consistent with the RH_TS_SIZE
register value, because the total number of bits being controlled in each line are
NTS * RH_TS_SIZE.

Data Source Specifies the Receive HDSL data destination for each time slot.
000—Discard
001—Insert into Receive FIFO
010—Reserved
011—Output to RHAUX pin, auxiliary channel
100-111—Reserved

17.4.32 Receive HDSL Mapper Write

Writes the receive HDSL Mapper table to the device. This should be called only
after the receive HDSL Mapper table has been completely filled in. The
appropriate resets are issued.

C constant _DSL_RH_MAPPER_WRITE
Opcode 0x37
Type Control

Incoming Bytes | 1
Outgoing Bytes | None

Incoming Data Parameter Description

Byte # Content Description
1 0 Set to 0 for future compatibility.
100605C Conexant 17-67

Preliminary Information/Conexant Proprietary and Confidential

17.0 ZipWire2 APl Commands

CN8980

17.4 Level 2 APl Commands

ZipWire2 HDSL2/SDSL Transceiver and Framer

17.4.33 Clear ZipWire2 Error Counters

Clears the specified ZipWire2 Error counters to 0. This command can either clear
all of the error counters or clear error counter blocks.

C constant _DSL_CLEAR_ERROR_CTRS
Opcode 0x40

Type Control

Incoming Bytes | 1

Outgoing Bytes | None

Incoming Data Parameter Description

Byte #

Description

Option

1 Clear Error Counter

See Table 17-15.

NOTE(S): The Clear All option does not clear the system performance error counters.

Table 17-15. Clear Error Counter Options

Option

Description

Parameter (C Constant)

Clear All

Clears all error counters.

0x00 (_CLEAR_ALL_COUNTERS)

Clear Operational

Clears the ZipWire2 operational error counter.

0x01 (_CLEAR_OPER_ERR_CTRS)

Clear HDSL Clears the ZipWire2 HDSL Performance error counter. 0x02 (_CLEAR_HDSL_ERR_CTRS)
Performance

Clear PCM Clears the ZipWire2 PCM Performance error counter. 0x03 (_CLEAR_PCM_ERR_CTRS)
Performance

Clear System
Performance

Clears the ZipWire2 System Performance error counter.

This is not cleared when the Clear All option is selected.

0x04 (_CLEAR_SYSTEM_ERR_CTRS)

Clear Error History

Clears the ZipWire2 Error History counters.

0x05 (_CLEAR_ERROR_HISTORY)

17-68

Conexant

100605C

Preliminary Information/Conexant Proprietary and Confidential

CNg980

17.0 ZipWire2 APl Commands

ZipWire2 HDSL2/SDSL Transceiver and Framer

17.4 Level 2 API Commands

17.4.34 Read ZipWire2 Operational Error Counters

Queries the ZipWire2 Operational Error counters. These error counters are

accumulated when the ZipWire2 device reaches normal operation or when the
Clear Error Counter command was issued. The operational error counters are

1-byte wide.
C constant _DSL_OPER_ERR_CTRS
Opcode 0x9C
Type Status
Incoming Bytes | 1
Outgoing Bytes | 10

Incoming Data Parameter Description

Byte # Content Description
1 0 Set to 0 for future compatibility.
Outgoing Data Parameter Description
Byte # Content Description
1 RFIFO Full 8-bit value specifying the number of Rx FIFO Full errors.
2 RFIFO Empty 8-bit value specifying the number of Rx FIFO Empty errors.
3 RFIFO Slip 8-bit value specifying the number of Rx FIFO Slip errors.
4 TFIFO Full 8-bit value specifying the number of Tx FIFO Full errors.
5 TFIFO Empty 8-bit value specifying the number of Tx FIFO Empty errors.
6 TFIFO Slip 8-bit value specifying the number of Tx FIFO Slip errors.
7 Transmit Stuff 8-bit value specifying the number of Tx Stuff errors.
8 DPLL 8-bit value specifying the number of DPLL errors.
9 TFIFO Water Level 8-bit value specifying the number of Tx FIFO Water Level errors.
10 RFIFO Water Level 8-bit value specifying the number of Rx FIFO Water Level errors.
100605C Conexant 17-69

Preliminary Information/Conexant Proprietary and Confidential

17.0 ZipWire2 APl Commands CN8980

17.4 Level 2 APl Commands ZipWire2 HDSL2/SDSL Transceiver and Framer

17.4.35 Read ZipWire2 HDSL Performance Error Counters

Queries the ZipWire2 HDSL Performance Error counters. These error counters
are accumulated when the ZipWire2 device reaches normal operation or when the
Clear Error Counter command was issued. The HDSL performance error
counters are 2-bytes wide.

C constant _DSL_HDSL_PERF_ERR_CTRS
Opcode 0x9E
Type Status

Incoming Bytes | 1
Outgoing Bytes | 10

Incoming Data Parameter Description

Byte #

Content Description

1

0 Set to 0 for future compatibility.

Outgoing Data Parameter Description

Byte # Content Description
1-2 Out-of-Sync (LOSW) 16-bit value specifying the number of Out-of-Sync errors. The low byte is sent
first followed by the high byte.
34 SEGD 16-bit value specifying the number of SEGD errors. The low byte is sent first
followed by the high byte.
5-6 CRC 16-bit value specifying the number of CRC errors. The low byte is sent first
followed by the high byte.
7-8 SEGA 16-bit value specifying the number of SEGA errors. The low byte is sent first
followed by the high byte.
9-10 LOSWT 16-bit value specifying the number of LOSWT errors. The low byte is sent first

followed by the high byte.

NOTE(S): 16-bit value = (high byte << 8) + (low byte)

17-70

Conexant 100605C
Preliminary Information/Conexant Proprietary and Confidential

CN8980 17.0 ZipWire2 APl Commands
ZipWire2 HDSL2/SDSL Transceiver and Framer 17.4 Level 2 APl Commands

17.4.36 Read ZipWire2 PCM Performance Error Counters

Queries the ZipWire2 PCM Performance Error counters. These error counters are
accumulated when the ZipWire2 device reaches normal operation or when the
Clear Error Counter command was issued. The PCM performance error counters
are 2-bytes wide.

C constant _DSL_PCM_PERF_ERR_CTRS
Opcode 0x9F
Type Status

Incoming Bytes | 1
Outgoing Bytes | 8

Incoming Data Parameter Description

Byte # Content Description

1 0 Set to 0 for future compatibility.

Outgoing Data Parameter Description

Byte # Content Description

1-2 LCV 16-bit value specifying the number of Line Code Violations (LCV) errors. The
low byte is sent first followed by the high byte.

3-4 LOS 16-bit value specifying the number of T1/E1 LOS errors. The low byte is sent
first followed by the high byte.

5-6 LOSD 16-bit value specifying the number of LOSD errors. The LOSD errors are
accumulated using the HDSL indictor bit. The low byte is sent first followed by
the high byte.

7-8 CRC 16-bit value specifying the number of PCM CRC errors. The low byte is sent first
followed by the high byte.

NOTE(S): 16-bit value = (high byte << 8) + (low byte)

100605C Conexant 17-71
Preliminary Information/Conexant Proprietary and Confidential

17.0 ZipWire2 APl Commands

CN8980

17.4 Level 2 APl Commands

ZipWire2 HDSL2/SDSL Transceiver and Framer

17.4.37 Read ZipWire2 System Performance Error Counters

Queries the ZipWire2 PCM Performance Error counters. These error counters are
accumulated when the ZipWire2 device reaches normal operation or when the
Clear Error Counter command was issued. The system performance error
counters are 2-bytes wide.

C constant _DSL_SYSTEM_PERF_ERR_CTRS
Opcode 0xA2

Type Status

Incoming Bytes | 1

Outgoing Bytes | 6

Incoming Data Parameter Description

Byte # Content Description
1 0 Set to 0 for future compatibility.
Outgoing Data Parameter Description
Byte # Content Description
1-2 Startup Attempts 16-bit value specifying the number of startup attempts. The low byte is sent first
followed by the high byte.
34 Startup Successful 16-bit value specifying the number of successful startup attempts. The low byte
is sent first followed by the high byte.
5-6 Framer Interrupt 16-bit value specifying the number of Framer Interrupt Watch-Dog errors. The
Watch-Dog low byte is sent first followed by the high byte.
NOTE(S): 16-bit value = (high byte << 8) + (low byte)

17-72

Conexant

Preliminary Information/Conexant Proprietary and Confidential

100605C

CNg980

17.0 ZipWire2 APl Commands

ZipWire2 HDSL2/SDSL Transceiver and Framer

17.4 Level 2 API Commands

17.4.38 Availabhle Seconds and Total Seconds

Requests the available seconds and total seconds since power-on or reset.

Available Seconds refers to the total accumulated time the system is in normal
operation (active transmit/receive state) and is passing data across the link. Total
Seconds refers to the total time the system has been in operation. Error Seconds
refer to the number of seconds that detected a CRC error. Error Seconds are only
accumulated while the system is in normal operation.

C constant _DSL_TIME
Opcode 0x9D
Type Status
Incoming Bytes | 1
Outgoing Bytes | 12
Incoming Data Parameter Description
Byte # Content Description
1 0 Set to 0 for future compatibility.
Outgoing Data Parameter Description
Byte # Content Description
1-5 Available Seconds 32-hit value; low byte first, most significant byte last which corresponds to byte
0, byte 1, byte 2, and byte 3.
5-8 Total Seconds 32-bit value; low byte first, most significant byte last which corresponds to byte
0, byte 1, byte 2, and byte 3.
9-12 Error Seconds 32-bit value; low byte first, most significant byte last which corresponds to byte

0, byte 1, byte 2, and byte 3.

NOTE(S): 32-bit value = (byte 4 << 24) + (byte 3 << 16) + (byte 2 << 8) + (byte 1)

100605C

Conexant 17-73
Preliminary Information/Conexant Proprietary and Confidential

17.0 ZipWire2 APl Commands CN8980

17.4 Level 2 APl Commands ZipWire2 HDSL2/SDSL Transceiver and Framer

17.4.39 Inject DSL CRC Error

Inject a CRC error in the next N number of DSL frames or continuously inject
CRC in all frames. All six CRC bits are inverted based on the calculated CRC
values. The user can issue the Inject CRC Error OFF option before all N frames
are completed.

C constant _DSL_INJECT_CRC_ERROR
Opcode 0x41
Type Control

Incoming Bytes | 1
Outgoing Bytes | None

Incoming Data Parameter Description

Byte #

Content Description

1

Inject CRC Configuration See Table 17-16

Table 17-16. Inject CRC Error Options

Option Description Parameter (C Constant)
Ooff Normal CRC value (Default Value). 0x00 (_INJECT_CRC_OFF)
Continuous Error Continuously inject CRC error in all DSL frames. OxFF (_INJECT_CRC_CONT)
Inject N Errors Inject CRC error in next N number of DSL frames. A value 1-254
of 1 equals 1 frame.
17-74 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CNg980

17.0 ZipWire2 APl Commands

ZipWire2 HDSL2/SDSL Transceiver and Framer 17.4 Level 2 APl Commands

17.4.40 Set CRC/FEBE Error History State

Enable or disable the CRC and FEBE Error History accumulation.

C constant _DSL_CRC_FEBE_ERR_STATE
Opcode 0x42
Type Control

Incoming Bytes | 1

Outgoing Bytes | None

Incoming Data Parameter Description

Byte # Content Description
1 Error History See bit-field description below
Configuration

Bit 7:1 Bit 0
Reserved CRC/FEBE State

CRC/FEBE State:

Enables or disables the CRC/FEBE error history.

0—Disabled

1—Enabled

100605C Conexant 17-75

Preliminary Information/Conexant Proprietary and Confidential

17.0 ZipWire2 APl Commands CN8980

17.4 Level 2 APl Commands ZipWire2 HDSL2/SDSL Transceiver and Framer

17.4.41 Query CRC/FEBE History Interval In-Progress

Requests the current CRC and FEBE interval error counter for Interval 1,
Interval 2, and Interval 3. Interval 1 records the number of CRC and FEBE errors
occurring in 1-second intervals for a 15-minute time period and is updated every
second. Interval 2 records the number of CRC and FEBE errors occurring in each
15-minute interval for a 24-hour time period and is updated every 15 minutes.
Interval 3 records the number of CRC and FEBE errors occurring in each 24-hour
interval for a 7-day period and is updated daily.

The Interval 1 records are 1-byte wide. The Interval 2 and Interval 3 records
are 2-bytes wide.

C constant _DSL_CRC_FEBE_IN_PROGRESS
Opcode 0x95
Type Status

Incoming Bytes | 1
Outgoing Bytes | 10

Incoming Data Parameter Description

Byte #

Content Description

1

0 Set to 0 for future compatibility.

Outgoing Data Parameter Description

Byte # Content Description
1 Current CRC at Interval 1 8-bit value specifying the CRC error at the Interval 1 counter.
2-3 Current CRC at Interval 2 16-bit value specifying the CRC error at the Interval 2 counter. The low byte is
sent first followed by the high byte.
4-5 Current CRC at Interval 3 16-bit value specifying the CRC error at the Interval 3 counter. The low byte is
sent first followed by the high byte.
6 Current FEBE at Interval 1 8-bit value specifying the FEBE error at the Interval 1 counter.
7-8 Current FEBE at Interval 2 16-bit value specifying the FEBE error at the Interval 2 counter. The low byte is
sent first followed by the high byte.
9-10 Current FEBE at Interval 3 16-bit value specifying the FEBE error at the Interval 3 counter. The low byte is
sent first followed by the high byte.
NOTE(S): 16-bit value = (high byte << 8) + (low byte).

17-76

Conexant 100605C
Preliminary Information/Conexant Proprietary and Confidential

CN8980 17.0 ZipWire2 APl Commands
ZipWire2 HDSL2/SDSL Transceiver and Framer 17.4 Level 2 APl Commands

17.4.42 CRC Error History at Interval 1

Requests the CRC Error History at Interval 1. Interval 1 records the number of
CRC errors occurring in 1-second intervals for a 15-minute time period and is
updated every second. Each 1-second entry is 1-byte wide and can record up to
255 errors. The error counter will stop incrementing when it reaches the
maximum of 255 errors. Record entry 0 corresponds to the previous second while
entry 899 corresponds to 900 seconds prior.

Because the API protocol cannot transfer all 900 bytes at once, the complete
error history must be downloaded in blocks of 50 bytes at a time. The incoming
byte specifies which block to download

C constant _DSL_CRC_ERR_INTERVAL 1
Opcode 0x96
Type Status

Incoming Bytes | 1
Outgoing Bytes | 50

Incoming Data Parameter Description

Byte # Content Description

1 Which CRC Block 0 = First block, records 0-49
1 = Second block, records 50-99
N = Nth block, where N = 0-17 (18 blocks) which represents records (N x 50)

to (N x 50 + 49)
Incoming Data Parameter Description
Byte # Content Description
1-50 CRC at Interval 1 Block 8-bit value specifying the CRC error at the Interval 1 counter.
100605C Conexant 17-77

Preliminary Information/Conexant Proprietary and Confidential

17.0 ZipWire2 APl Commands CN8980
17.4 Level 2 APl Commands ZipWire2 HDSL2/SDSL Transceiver and Framer

17.4.43 CRC Error History at Interval 2

Requests the CRC Error History at Interval 2. Interval 2 records the number of
CRC errors occurring in each 15-minute interval for a 24-hour time period and is
updated every 15 minutes. Each 15-minute entry is 2-bytes wide and can record
up to 65,535 errors. The error counter will stop incrementing when it reaches the
maximum of 65,535 errors. Record entry 0 corresponds to the previous
15-minute interval while entry 95 corresponds to 96, 15-minute intervals prior.

Because the API protocol cannot transfer all 192 (96 x 2) bytes at once, the
complete error history must be downloaded in blocks of 48 bytes at a time. The
incoming byte specifies which block to download.

C constant _DSL_CRC_ERR_INTERVAL 2
Opcode 0x97
Type Status

Incoming Bytes | 1
Outgoing Bytes | 48

Incoming Data Parameter Description

Byte # Content Description

1 Which CRC Block 0 = First block, records 0—23

1 = Second block, records 24-47
2 = Third block, records 48-71

3 = Second block, records 72-95

Outgoing Data Parameter Description

Byte # Content Description

1-48 CRC at Interval 2 Block 16-bit value specifying the CRC Error at the Interval 2 counter. The low byte is
sent first followed by the high byte. Because 2 bytes comprise one record entry,
bytes 0—1 = Entry 0, bytes 2-3 = Entry 1, and so on.

NOTE(S): 16-bit value = (high byte << 8) + (low byte)

17-78 Conexant 100605C
Preliminary Information/Conexant Proprietary and Confidential

CN8980 17.0 ZipWire2 APl Commands
ZipWire2 HDSL2/SDSL Transceiver and Framer 17.4 Level 2 APl Commands

17.4.44 CRC Error History at Interval 3

Requests the CRC Error History at Interval 3. Interval 3 records the number of CRC
errors occurring in each 24-hour interval for a 7-day period and is updated daily.
Each 1-day entry is 2-bytes wide and can record up to 65,535 errors. The error
counters will stop incrementing when it reaches the maximum of 65,535 errors.
Record entry 0 corresponds to the previous 1-day interval while entry 6 corresponds
to 7, 1-day intervals prior.

C constant _DSL_CRC_ERR_INTERVAL 3
Opcode 0x98
Type Status

Incoming Bytes | 1
Outgoing Bytes | 14

Incoming Data Parameter Description

Byte # Content Description

1 0 Set to 0 for future compatibility.

Outgoing Data Parameter Description

Byte # Content Description

1-14 CRC at Interval 3 Block 16-bit value specifying the CRC Error at the Interval 3 counter. The low
byte is sent first followed by the high byte. Because 2 bytes comprise one
record entry, bytes 0—1 = Entry 0, bytes 2-3 = Entry 1, and so on.

NOTE(S): 16-bit value = (high byte << 8) + (low byte)

100605C Conexant 17-79
Preliminary Information/Conexant Proprietary and Confidential

17.0 ZipWire2 APl Commands CN8980
17.4 Level 2 APl Commands ZipWire2 HDSL2/SDSL Transceiver and Framer

17.4.45 FEBE Error History at Interval 1

Requests the FEBE Error History at Interval 1. Interval 1 records the number of
FEBE errors occurring in 1-second intervals for a 15-minute time period and is
updated every second. Each 1-second entry is 1-byte wide and can record up to
255 errors. The error counter will stop incrementing when it reaches the
maximum of 255 errors. Record entry 0 corresponds to the previous second while
entry 899 corresponds to 900 seconds prior.

Because the API protocol cannot transfer all 900 bytes at once, the complete
error history must be downloaded in blocks of 50 bytes at a time. The incoming
byte specifies which block to download

C constant _DSL_FEBE_ERR_INTERVAL 1
Opcode 0x99
Type Status

Incoming Bytes | 1
Outgoing Bytes | 50

Incoming Data Parameter Description

Byte # Content Description

1 Which FEBE Block 0 = First block, records 0-49
1 = Second block, records 50-99
N = Nth block, where N = 0-17 (18 blocks) which represents records (N x 50)

to (N x 50 + 49)
Incoming Data Parameter Description
Byte # Content Description
1-50 FEBE at Interval 1 Block 8-bit value specifying the FEBE Error at the Interval 1 counter.
17-80 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CN8980 17.0 ZipWire2 APl Commands
ZipWire2 HDSL2/SDSL Transceiver and Framer 17.4 Level 2 APl Commands

17.4.46 FEBE Error History at Interval 2

Requests the FEBE Error History at Interval 2. Interval 2 records the number of
FEBE errors occurring in each 15-minute interval for a 24-hour time period and
is updated every 15 minutes. Each 15-minute entry is 2-bytes wide and can record
up to 65,535 errors. The error counter will stop incrementing when it reaches the
maximum of 65,535 errors. Record entry 0 corresponds to the previous
15-minute interval while entry 95 corresponds to 96, 15-minute intervals prior.

Because the API protocol cannot transfer all 192 (96 x 2) bytes at once, the
complete error history must be downloaded in blocks of 48 bytes at a time. The
incoming byte specifies which block to download

C constant _DSL_FEBE_ERR_INTERVAL 2
Opcode 0x9A
Type Status

Incoming Bytes | 1
Outgoing Bytes | 48

Incoming Data Parameter Description

Byte # Content Description

1 Which FEBE Block 0 = First block, records 0—23

1 = Second block, records 24-47
2 = Third block, records 48-71

3 = Second block, records 72-95

Outgoing Data Parameter Description

Byte # Content Description

1-48 FEBE at Interval 2 Block 16-bit value specifying the CRC Error at the Interval 2 counter. The low byte is
sent first followed by the high byte. Because 2 bytes comprise one record entry,
bytes 0—1 = Entry 0, bytes 2-3 = Entry 1, and so on.

NOTE(S): 16-bit value = (high byte << 8) + (low byte)

100605C Conexant 17-81
Preliminary Information/Conexant Proprietary and Confidential

17.0 ZipWire2 APl Commands CN8980

17.4 Level 2 APl Commands ZipWire2 HDSL2/SDSL Transceiver and Framer

17.4.47 FEBE Error History at Interval 3

Requests the FEBE Error History at Interval 3. Interval 3 records the number of
FEBE errors occurring in each 24-hour interval for a 7-day period and is updated
daily. Each 1-day entry is 2-bytes wide and can record up to 65,535 errors. The
error counters will stop incrementing when it reaches the maximum of 65,535
errors. Record entry 0 corresponds to the previous 1-day interval while entry 6
corresponds to the 7, 1-day intervals prior.

C constant _DSL_FEBE_ERR_INTERVAL 3
Opcode 0x9B
Type Status

Incoming Bytes | 1
Outgoing Bytes | 14

Incoming Data Parameter Description

Byte #

Content Description

1

0 Set to 0 for future compatibility.

Outgoing Data Parameter Description

Byte #

Content Description

1-14

FEBE at Interval 3 Block 16-bit value specifying the FEBE Error at the Interval 3 counter. The low byte is
sent first followed by the high byte. Because 2 bytes comprise one record entry,
bytes 0—1 = Entry 0, bytes 2-3 = Entry 1, and so on.

NOTE(S): 16-bit value = (high byte << 8) + (low byte).

17-82

Conexant 100605C
Preliminary Information/Conexant Proprietary and Confidential

CNg980

17.0 ZipWire2 APl Commands

ZipWire2 HDSL2/SDSL Transceiver and Framer

17.5 Level 3 API Commands

17.5 Level 3 APl Commands

17.5.1 Signal Level Meter

Requests the level of the average signal level at the ADC input.

NOTE: The signal at the ADC input consists of a large transmitted echo
component and a smaller far-end signal component. Thus, no cable
attenuation data may be extracted from this information.

The input voltage is calculated using the following formula: (formula to be

determined)
C constant _DSL_SLM
Opcode 0x8E
Type Status

Incoming Bytes | 1

Outgoing Bytes | 1

Incoming Data Parameter Description

Byte # Content Description
1 0 Set to 0 for future compatibility.
Outgoing Data Parameter Description
Byte # Content Description
1 Attenuation 1-byte unsigned integer X (0 < X < 255) relative to the average absolute value
of the ADC input signal. The measurement scale is such that a value of 255
corresponds to the ADC positive full-scale value.
100605C Conexant 17-83

Preliminary Inform

ation/Conexant Proprietary and Confidential

17.0 ZipWire2 APl Commands CN8980
17.5 Level 3 APl Commands ZipWire2 HDSL2/SDSL Transceiver and Framer

17.5.2 Timing Recovery Offset

Requests the offset value of the Timing Recovery Control circuit. This value
indicates the timing recovery frequency relative to its center frequency, which
does not necessarily equal the nominal transmission frequency. On an HTU-C
terminal, this response will always be zero since the control circuit is set to its
nominal value. On an HTU-R terminal, this value gives an estimate of the
frequency offset relative to the center frequency.

The relation of the given value to the frequency offset in Hz can be calculated
using the formula: (formula to be determined)

C constant _DSL_TIMING_RECOVERY
Opcode 0x84
Type Status

Incoming Bytes | 1
Outgoing Bytes | 2

Incoming Data Parameter Description

Byte # Content Description

1 0 Set to 0 for future compatibility.

Outgoing Data Parameter Description

Byte # Content Description

1-2 Timing Recovery 2-byte signed integer X (-32,768 < X < +32,767 indicating the Timing
Recovery control word. The low byte is sent first followed by the high byte.

NOTE(S): 16-bit value = (high byte << 8) + (low byte)

17-84 Conexant 100605C
Preliminary Information/Conexant Proprietary and Confidential

CN8980 17.0 ZipWire2 APl Commands

ZipWire2 HDSL2/SDSL Transceiver and Framer 17.5 Level 3 APl Commands

17.5.3 Bit Pump Reverse Tip/Ring

Reverses the tip/ring polarity on the received signal in the DSP receiver. This does
not reverse the tip/ring polarity on the transmitted signal. This command should
be used only while operating in Framer Bypass mode because the ZipWire2
framer can automatically handle tip/ring reversal.

NOTE: This command is useful in applications where the external framer has the
ability to detect tip/ring reversal but cannot correct the tip/ring reversal.
Since this command only reverses the received signal, it is necessary to
call this command on both the central and remote terminals when tip/ring
reversal is detected.

C constant _BP_REVERSE_TIP_RING
Opcode 0x14
Type Control

Incoming Bytes | 1
Outgoing Bytes | None

Incoming Data Parameter Description

Byte # Content Description

1 Tip/Ring Configuration 0 = Sets the Tip/Ring polarity on the received signal to normal (not-reversed).
1 = Reverses the Tip/Ring polarity on the received signal.

17.5.4 Scrambler/Descrambler Configuration

Configures the DSL scramblers and descramblers. See Section 16.2.1.

C constant _DSL_SCR_DESCR_CONFIG
Opcode 0x04
Type Control

Incoming Bytes | 1
Outgoing Bytes | None

Incoming Data Parameter Description

Byte # Content Description
1 Scr/Descr Configuration See bit-field description below. Default value = 0x22.
Bit 7:6 Bit 5:4 Bit 3:2 Bit 1:0
Tap Select Rx Descrambler Reserved Tx Scrambler
100605C Conexant 17-85

Preliminary Information/Conexant Proprietary and Confidential

17.0 ZipWire2 APl Commands

CN8980

17.5 Level 3 APl Commands ZipWire2 HDSL2/SDSL Transceiver and Framer
Tap Select Configure the ZipWire2 Framer to use the same scrambler and descrambler tap in
the Transmit and Receive HDSL Framer blocks. This is necessary in certain
loopbacks where the DSL transmitted data is looped back into the DSL receiver
without a separate scramble or descramble operation being performed on the data.
However, the appropriate loopbacks will automatically take care of switching the
scrambler and descrambler taps.
Value Option Description C Constant
0x00 Normal The Tx scrambler and Rx descrambler use the —
default (different) taps (Default Value).
0x01 Use Tap 5 Set both to use Tap 5. —
0x02 Use Tap 18 Set both to use Tap 18. —
0x03 Reserved — —

Transmit Scrambler

Selects the internal Transmit Scrambler options. The ZipWire2 device has

separate scramblers in the bit pump DSP and DSL Framer blocks. The ZipWire2
must have scrambled data in order for the transceiver to function properly. The
scrambler function can be generated internally or must be provided by the
external data source.

Value

Option

Description

C Constant

0x00

Bypass

Disables both the Bit Pump and DSL Framer
scramblers. The external data source must
provide the necessary scrambling. This mode
should only be used in Framer Bypass mode.
All data bits are transmitted unchanged.

_SCR_DESCR_BYPASS

0x01

Bit Pump Only

The Bit Pump scrambler is enabled and the
DSL Framer scrambler is disabled. This mode
should only be used in Framer Bypass mode.
All data bits are scrambled.

_SCR_DESCR_BIT_PUMP

0x02

DSL Framer Only
(Framed)

The DSL Framer scrambler is enabled and the
Bit Pump scrambler is disabled. This mode
should be used when the ZipWire2 framer is
enabled. This mode provides the proper
framed data structure that conforms to the
HDSL standards (Default Value).

SCR_DESCR_FRAMED

0x03

Bit Pump and DSL
Framer

Enables both the Bit Pump and DSL Framer
scramblers. The mode is provided for
debugging purposes only and should not be
used in customer applications.

_SCR_DESCR_BOTH

17-86

Conexant

100605C

Preliminary Information/Conexant Proprietary and Confidential

CN8980 17.0 ZipWire2 APl Commands
ZipWire2 HDSL2/SDSL Transceiver and Framer 17.5 Level 3 APl Commands

Receive Descrambler Selects the internal Receive Descrambler options. The ZipWire2 device has
separate descramblers in the bit pump DSP and DSL Framer blocks. The Receive
Descrambler source should match the far-end’s Transmit Scrambler source.

Value Option Description C Constant

0x00 Bypass Disables both the Bit Pump and DSL Framer _SCR_DESCR_BYPASS
descramblers. All received data bits are
unchanged.

0x01 Bit Pump Only The Bit Pump descrambler is enabled and the _SCR_DESCR_BIT_PUMP

DSL Framer descrambler is disabled. This mode
should only be used in Framer Bypass mode. All
received data bits are descrambled.

0x02 DSL Framer Only The DSL Framer descrambler is enabled and the _SCR_DESCR_FRAMED
(Framed) Bit Pump descrambler is disabled. This mode
should be used when the ZipWire2 framer is
enabled. This mode receives the proper framed
data structure that conforms to the HDSL
standards (Default Value).

0x03 Bit Pump and DSL Enables both the Bit Pump and DSL Framer _SCR_DESCR_BOTH
Framer descramblers. This mode is provided for
debugging purposes only and should not be
used in customer applications.

17.5.5 Write AFE Transmit Gain

Writes the AFE Line Driver Transmitter Gain register. The Transmitter Gain
register is a 5-bit unsigned value; the upper 3 bits are ignored. The Tx Gain
adjusts the nominal transmit power of the ZipWire2 device. The Tx Gain ranges
from +1.6 dBm (0x00) to —1.6 dBm (0x1F). Each code range is 0.1 dBm steps.

C constant _AFE_TX_ GAIN
Opcode 0x13
Type Control

Incoming Bytes | 1
Outgoing Bytes | None

Incoming Data Parameter Description

Byte # Content Description
1 Tx Gain 5-bit unsigned integer value. The default is 0x10.
100605C Conexant 17-87

Preliminary Information/Conexant Proprietary and Confidential

17.0 ZipWire2 APl Commands CN8980

17.5 Level 3 APl Commands ZipWire2 HDSL2/SDSL Transceiver and Framer

17.5.6 Read AFE Transmit Gain

Read the AFE Line Driver Transmitter Calibration/Gain value. The transmitter
gain value is a 5-bit unsigned value. The upper 3-bits of this field are ignored.

C constant _AFE _READ TX
Opcode 0x91
Type Status

Incoming Bytes | 1
Outgoing Bytes | 2

Incoming Data Parameter Description

Byte # Content Description

1 0 Set to 0 for future compatibility.

Outgoing Data Parameter Description

Byte # Content Description
1 Tx Calibration 5-Bit unsigned integer value indicating the transmit gain calibration value.
2 Tx Gain 5-Bit unsigned integer value indicating the transmit gain value.
17-88 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CNg980

17.0 ZipWire2 APl Commands

ZipWire2 HDSL2/SDSL Transceiver and Framer 17.5 Level 3 APl Commands

17.5.7 DSL Framer Transmit Path Reset

Writing a 1 to a single bit in this command resets the operation of the
corresponding module in the transmit path. After the reset operation is completed,
the device will clear the bit; therefore, the read-back will read 0.

C constant _DSL_FR_TX RESET
Opcode 0x4E
Type Control

Incoming Bytes | 1

Outgoing Bytes | None

Incoming Data Parameter Description

Byte # Content Description
1 Transmit Mask See bit-field description below.
Bit # Block Description
0 TP_PRBS_RST Writing 1 to this bit will reset the transmit PCM PRBS process (towards
HDSL).
1 TP_BER RST Writing 1 to this bit will reset the transmit PCM BER Meter process (from
PCM).
2 TX_WL_START Writing 1 to this bit will start the process of transmit water level
measurement.
3 TX_WL_RST Writing 1 to this bit will initialize the transmit water level depth (due to
TX_WL_VAL_IN).
4 TX_FIFO_RST Writing 1 to this bit will initialize the transmit FIFO pointers.
5 TP_SD_RST Writing 1 to this bit will initialize the transmit BSP Sync Detector process.
7:6 Reserved —
100605C Conexant 17-89

Preliminary Information/Conexant Proprietary and Confidential

17.0 ZipWire2 APl Commands

CN8980

17.5 Level 3 APl Commands

ZipWire2 HDSL2/SDSL Transceiver and Framer

17.5.8 DSL Framer Receive Path Reset

Writing a 1 to a single bit in this command resets the operation of the
corresponding module in the receive path. After the reset operation is completed,
the device will clear the bit; therefore, the read-back will read 0.

C constant _DSL._FR_RX RESET
Opcode 0x4F
Type Control

Incoming Bytes | 1

Outgoing Bytes | None

Incoming Data Parameter Description

Byte # Content Description
1 Receive Mask See bit-field description below.

Bit # Block Description
0 RP_PRBS_RST Writing 1 to this bit will reset the receive PCM PRBS process (towards PCM).
1 RP_BER RST Writing 1 to this bit will reset the receive PCM BER Meter process (from HDSL).
2 RX_WL_START Writing 1 to this bit will start the process of receive water level measurement.
3 RX_WL_RST Writing 1 to this bit will initialize the receive water level depth (due to

RX_WL_VAL_IN).
4 RX_FIFO_RST Writing 1 to this bit will initialize the receive FIFO pointers.
5 RP_SD_RST Writing 1 to this bit will initialize the receive BSP Sync Detector process.
6 DPLL_RST Writing 1 to this bit will reset the DPLL state machine.
7 HSYNC_RST Writing 1 to this bit will reset the HDSL SYNC Detector state machine.
17-90 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CNg980

17.0 ZipWire2 APl Commands

ZipWire2 HDSL2/SDSL Transceiver and Framer 17.5 Level 3 APl Commands

17.5.9 DSL Framer—HDSL Configuration

Configure the DSL Framer HDSL block. This only applies when the DSL Framer

is enabled.
C constant _DSL_FR_HDSL_CONFIG
Opcode 0x11
Type Control

Incoming Bytes | 1

Outgoing Bytes | None

Incoming Data Parameter Description

Byte # Content Description
1 HDSL Configuration See bit-field description below.
Bit 7:2 Bit 1 Bit0
Reserved HXP Polarity AUX Mode
HXP Polarity In HDSL 2B1Q applications, the HXP_POL shall be set to 0 to be compliant
(HXP = 0 is sign and HXP = 1 is magnitude).

0—Active low
I—Active high

AUX Mode Auxiliary Channel Mode (see Section 6.3.1.3).
0—THLOAD and RHMARK pins are active-high during the relevant data
1—THLOAD and RHMARK pins are clock-gated. Coincides with the

relevant data
100605C Conexant 17-91

Preliminary Information/Conexant Proprietary and Confidential

17.0 ZipWire2 APl Commands

CN8980

17.5 Level 3 APl Commands

ZipWire2 HDSL2/SDSL Transceiver and Framer

17.5.10 Mask Host Port Interrupt (INTR_HOST)

Masks the INTR_HOST pin on the Host Port Interface. When masked, the
INTR_HOST will always be inactive (high) but the API Status Acknowledge and
API results can still be polled.

C constant _DSL_MASK_INTR_HOST
Opcode 0x52

Type Control

Incoming Bytes | 1

Outgoing Bytes | None

Incoming Data Parameter Description

Byte # Content Description
1 Host Port Mask See bit-field description below. TBD
Bit 7:3 Bit 2 Bit 1 Bit 0
Reserved System Status EOC Status API Result
17-92 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CN8980 17.0 ZipWire2 APl Commands

ZipWire2 HDSL2/SDSL Transceiver and Framer 17.5 Level 3 APl Commands

17.5.11 DSL Framer Auto Water Level

Configures the DSL Framer Auto Water Level.

C constant _DSL_AUTO_WATER_LEVEL
Opcode 0x2B
Type Control

Incoming Bytes | 1
Outgoing Bytes | None

Incoming Data Parameter Description

Byte # Content Description
1 Water Level Configuration | See bit-field description below.
Bit 7:2 Bit 1 Bit 0
Reserved AUTO_RX_WL AUTO_TX_WL

AUTO _RX_WL Enables or disables the Auto Receive Water Level.
0—Disable; use DSL Framer Rx Water Level to set desired water level
1—Enable (default)

AUTO_TX_WL Enables or disables the Auto Transmit Water Level.
0—Disable; use DSL Framer Tx Water Level to set desired water level

1—Enable (default)

17.5.12 DSL Framer Transmit Water Level

Sets the DSL Framer Transmit Water Level when the Auto Water Level is
disabled. The transmit water level is a 10-bit value with a value range of 1-1,024
bits where a 0 corresponds to 1 bit.

C constant _DSL_TX_WATER_LEVEL
Opcode 0x2C
Type Control

Incoming Bytes | 2
Outgoing Bytes | None

Incoming Data Parameter Description

Byte # Content Description
1 Water Level (Low Byte) Contains the lower 8 bits of the water level parameter.
2 Water Level (High Byte) Contains the upper 2 bits of the water level parameter.
100605C Conexant 17-93

Preliminary Information/Conexant Proprietary and Confidential

17.0 ZipWire2 APl Commands

CN8980

17.5 Level 3 APl Commands

ZipWire2 HDSL2/SDSL Transceiver and Framer

17.5.13 DSL Framer Receive Water Level

Sets the DSL Framer Receive Water Level when the Auto Water Level is disabled.
The receive water level is a 10-bit value with a value range of 1-1024 bits where a
0 corresponds to 1 bit.

C constant _DSL_RX WATER_LEVEL
Opcode 0x2D
Type Control

Incoming Bytes | 2

Outgoing Bytes | None

Incoming Data Parameter Description

Byte # Content Description
1 Water Level (Low Byte) Contains the lower 8 bits of the water level parameter.
2 Water Level (High Byte) Contains the upper 2 bits of the water level parameter.
17-94 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CN8980 17.0 ZipWire2 APl Commands
ZipWire2 HDSL2/SDSL Transceiver and Framer 17.5 Level 3 APl Commands

17.5.14 DSL Framer DPLL Clock Generator

When the DSL Framer DPLL is in NCO Open mode, the DPLL Clock output
(signal RPDPLLCLK) can be used as a clock generator. Based on the desired
output clock frequency, use the formula to calculate the integer and fractional
parts of the DPLL configuration register:

INTEGER.FRACTION = (F refclk X LPLL_M UL)

Fclkout
where:
Felkout = Desired Clock Frequency Output
Frefclk = Input Reference Clock, typically 19.6608 MHz

LPLL_MUL = LPLL multiplication factor, typically 5 for Frefclk = 19.6608 MHz
INTEGER = Integer part of result
FRACTION = Fractional part of result

Frefclk x PLL_MUL creates the internal HFCLK clock. The HFCLK
frequency should be 100-130 MHz. Only the INTEGER (2 bytes), FRACTION
(2 bytes), and LPLL_MUL (1 byte) require programming. The API commands
are then programmed as follows:

_DSL_DPLL_CLK LPLL_MUL =LPLL_MUL -1
_DSL_DPLL_CLK_INT =INTEGER -1
_DSL_DPLL_CLK_FRAC = round(FRACTION X 65,535)

Example:

Fclkout = 2.048 MHz
Frefclk = 22.1184 MHz
LPLL_MUL =5

6
INTEGER.FRACTION = [WJ

2.048 x 10°

INTEGER.FRACTION = 54.5325

_DSL_DPLL_CLK LPLL MUL=5-1=4
_DSL_DPLL_CLK_INT=54-1=353
_DSL_DPLL_CLK_FRAC =round(0.5325 x 65,535) = 34,897 = 0x8,851

100605C Conexant 17-95
Preliminary Information/Conexant Proprietary and Confidential

17.0 ZipWire2 APl Commands

CN8980

17.5 Level 3 APl Commands

ZipWire2 HDSL2/SDSL Transceiver and Framer

C constant _DSL_DPLL_CLOCK_GEN
Opcode 0x58
Type Control
Incoming Bytes | 5
Outgoing Bytes | None
Incoming Data Parameter Description
Byte # Content Description
1 LPLL Multiplication 1-byte value specifying the LPLL Multiplication Factor. Program this value to
Factor one less than the desired multiplication factor.
2-3 Integer Part 2-byte value specifying the integer part. Program this to one less than the
desired integer value. Low byte is programmed first.
4-5 Fractional Part 2-byte value specifying the fractional part. The low byte is programmed first.
17-96 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CN8980 17.0 ZipWire2 APl Commands
ZipWire2 HDSL2/SDSL Transceiver and Framer 17.6 Read/Write Register Commands

17.6 Read/Write Register Commands

The Read/Write Register commands are per ZipWire2 device and thus require the
_ZIP_WIREO to _ZIP_WIRE7 (0x00—0x07) destination (see Table 15-1).
There are 2 sets of Read/Write Register commands:

» Internal 8051 Addressable Data Space (see Section 4.1)—The data space
range is a 16-bit address field, 0x0000—0xFFFF (0-65,535).

» ZipWire2 AFE Data Space—The AFE is accessed via indirect registers
through the DSP. The AFE data space range is a 7-bit address field,
0x00-0x7F (0-127).

NOTE: The ZipWire2 Register map is not provided. These commands are
primarily provided for internal development and characterization.
However, to isolate a problem, Conexant engineering may at times ask the
customer to provide an internal register dump.

17.6.1 Write Register

This command writes the specified block of data to the specified address.

C constant _DSL_WRITE_REG
Opcode 0x75
Type Control

Incoming Bytes | 3 + block size (length)
Outgoing Bytes | None

Incoming Data Parameter Description

Byte # Content Description
1-2 Address 2-byte value specifying the address. Low byte is programmed first.
3 Length (L) 1-byte specifying the block size up to 64 bytes. A length of 0 corresponds to 1

byte and a 63 corresponds to 64 bytes.

4+L Data Block of data. The first byte is written to the specified address, the second byte
to the address + 1, and so on.

NOTE(S): Address = (high << 8) + low.

100605C Conexant 17-97
Preliminary Information/Conexant Proprietary and Confidential

17.0 ZipWire2 APl Commands CN8980
17.6 Read/Write Register Commands ZipWire2 HDSL2/SDSL Transceiver and Framer

17.6.2 Read Register

This command reads the specified block of data from the specified address.

C constant _DSL_READ_REG
Opcode 0xA0
Type Control

Incoming Bytes | 3
Outgoing Bytes | Block size (length)

Incoming Data Parameter Description

Byte # Content Description
1-2 Address 2-byte value specifying the address. Low byte is programmed first.
3 Length (L) 1-byte specifying the block size up to 64 bytes. A length of 0 corresponds to 1
byte and a 63 corresponds to 64 bytes.

NOTE(S): Address = (high << 8) + low.

Outgoing Data Parameter Description

Byte # Content Description

1-L Data Block of data. The first byte corresponds to the specified address, the second
byte to the address + 1, and so on.

17.6.3 Write AFE Register

This command writes the specified block of data to the specified address of the

AFE device.
C constant _DSL_WRITE_AFE
Opcode 0x76
Type Control

Incoming Bytes | 2 + block size (length)
Outgoing Bytes | None

Incoming Data Parameter Description

Byte # Content Description
1 Address 1-byte value specifying the address. The AFE only has 128 registers.
2 Length (L) 1-byte specifying the block size up to 64 bytes. A length of 0 corresponds to 1

byte and a 63 corresponds to 64 bytes.

4+L Data Block of data. The first byte is written to the specified address, the second byte
to the address + 1, and so on.

17-98 Conexant 100605C
Preliminary Information/Conexant Proprietary and Confidential

CN8980 17.0 ZipWire2 APl Commands
ZipWire2 HDSL2/SDSL Transceiver and Framer 17.6 Read/Write Register Commands

17.6.4 Read AFE Register

This command reads the specified block of data from the specified address of the

AFE device.
C constant _DSL_READ_AFE
Opcode 0xAl
Type Control

Incoming Bytes | 2
Outgoing Bytes | Block size (length)

Incoming Data Parameter Description

Byte # Content Description
1 Address 1-byte value specifying the address. The AFE only has 128 registers.
2 Length (L) 1-byte specifying the block size up to 64 bytes. A length of 0 corresponds to 1
byte and a 63 corresponds to 64 bytes.

Outgoing Data Parameter Description

Byte # Content Description

1-L Data Block of data. The first byte is corresponds to the specified address, the second
byte to the address + 1, and so on.

100605C Conexant 17-99
Preliminary Information/Conexant Proprietary and Confidential

17.0 ZipWire2 APl Commands CN8980
17.7 T1/E1 Framer Commands ZipWire2 HDSL2/SDSL Transceiver and Framer

17.7 T1/E1 Framer Commands

All T1/E1 Framer Commands require the _T1E1_FRAMER (0x09) destination
(see Table 15-1).

17.7.1 T1/E1 Framer Configure

Configures the T1/E1 Framer PCM mode; all registers are programmed. When
the T1/E1 framer is present, the PCM mode is configured based on the DSL
Configuration API command.

NOTE: The Receive Termination pins in the Miscellaneous Output API command
are set accordingly.

C constant _T1E1_CONFIGURE
Opcode 0x01
Type Control

Incoming Bytes | 1
Outgoing Bytes | None

Incoming Data Parameter Description

Byte # Content Description

1 T1/E1 Configuration 0
1

17.7.2 T1/E1 Framer Frame Format

Configures the T1/E1 Framer frame format mode.

C constant _T1E1_FRAME_FORMAT
Opcode 0x02
Type Control

Incoming Bytes | 1
Outgoing Bytes | None

Incoming Data Parameter Description

Byte # Content Description

1 Frame Format 0 = Framed Mode (Default Value)
1 = Unframed Mode

17-100 Conexant 100605C
Preliminary Information/Conexant Proprietary and Confidential

CNg980

17.0 ZipWire2 APl Commands

ZipWire2 HDSL2/SDSL Transceiver and Framer 17.7 T1/E1 Framer Commands

17.7.3 T1/E1 Framer Transmit AIS

Configures the T1/E1 Framer to transmit an AIS (all-1s) pattern.

C constant _T1E1_TRANSMIT_AIS
Opcode 0x03
Type Control

Incoming Bytes | 1

Outgoing Bytes | None

Incoming Data Parameter Description

Byte #

Content

Description

1

Transmit AIS

0 = Disabled, transmit normal payload data (Default Value)
1 = Enabled, transmit AIS pattern

17.7.4 T1/E1 Framer Output Mode

Configures the T1/E1 Framer output mode. The output mode allows the T1/E1
framer outputs to be three-stated so the ZipWire2 PCM bus can be connected to a
different interface (i.e., V.35).

C constant _T1E1_OUTPUT_MODE
Opcode 0x03
Type Control

Incoming Bytes | 1

Outgoing Bytes | None

Incoming Data Parameter Description

Byte # Content Description
1 Output Mode 0 = Output enabled (Default Value)
1 = Output disabled
100605C Conexant 17-101

Preliminary Information/Conexant Proprietary and Confidential

17.0 ZipWire2 APl Commands

CN8980

17.7 T1/E1 Framer Commands

ZipWire2 HDSL2/SDSL Transceiver and Framer

17.7.5 T1/E1 Framer Receive Termination

Configures the T1/E1 Framer Receive Termination. The default value is based on
the T1/E1 configuration.

C constant _T1E1_RX TERM
Opcode 0x05
Type Control

Incoming Bytes | 1

Outgoing Bytes | None

Incoming Data Parameter Description

Byte # Content Description
1 Receive Termination 0 = Set to 120 Q termination, used in E1 (twisted pair) applications.
1 =Set to 100 Q termination, used in T1 applications (default for T1).
2 = Set to 75 Q termination, used in E1 (BNC) applications (default for E1).
17-102 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CN8980 17.0 ZipWire2 APl Commands
ZipWire2 HDSL2/SDSL Transceiver and Framer 17.7 T1/E1 Framer Commands

17.7.6 T1/E1 Framer Loopbacks

Operates the T1/E1 framer in a loopback mode (refer to Figure 11-2). To turn off
any of the loopback modes, use the loopback command with the
_EXIT_LOOPBACK (0 value) parameter.

The framer loopbacks can be issued (or exited) at any time during normal
operation without effecting the ZipWire2 link. Only the throughput data will be
effected to match the desired loopback condition.

All loopbacks can be issued while in the Out-of-Service (IDLE) state to
facilitate development and debugging of other devices in the system.

C constant _TIE1_LOOPBACK
Opcode 0x09
Type Control

Incoming Bytes | 1
Outgoing Bytes | None

Incoming Data Parameter Description

Byte # Content Description

1 Loopback Option See Table 17-17.

Table 17-17. T1/E1 Framer Loopback Options

Option Description Parameter (C Constant)

Exit Loopback Cancel current loopback (default value). 0x00 (_EXIT_LOOPBACK)

PCM Local The T1/E1 PCM transmit clock, data, and sync inputs are internally 0x00 (_T1E1_PCM_LOCAL)
looped back to the T1/E1 PCM receive clock, data, and sync
outputs.

PCM Line The T1/E1 PCM receive clock, data, and sync outputs are internally 0x01 (_T1E1_PCM_LINE)
looped back to the T1/E1 PCM transmit clock, data, and sync
inputs.

LIU Local The T1/E1 analog transmit signal is internally looped back to the 0x02 (_T1E1_LIU_LOCAL)
T1/E1 analog receive path.

LIU Line The T1/E1 analog receive signal is internally looped back to the 0x03 (_T1E1_LIU_LINE)
T1/E1 analog transmit path.

100605C Conexant 17-103
Preliminary Information/Conexant Proprietary and Confidential

17.0 ZipWire2 APl Commands CN8980

17.7 T1/E1 Framer Commands ZipWire2 HDSL2/SDSL Transceiver and Framer

17.7.7 T1/E1 Read Framer Control Commands

The Read Framer Control Commands API command is a read-back of the current
setting for each of T1/E1 Framer API control commands.

C constant _T1E1_READ_CONTROL
Opcode 0x80
Type Status

Incoming Bytes | 1
Outgoing Bytes | Depends on control command

Incoming Data Parameter Description

Byte # Content Description

1 Control Gommand Return the configuration for the specified control command. Input range is
Opcode 0-127 (0x7F).

Outgoing Data Parameter Description

Byte # Content Description

N — Refer to the specific control command.

17-104 Conexant 100605C
Preliminary Information/Conexant Proprietary and Confidential

CN8980 17.0 ZipWire2 APl Commands
ZipWire2 HDSL2/SDSL Transceiver and Framer 17.7 T1/E1 Framer Commands

17.7.8 T1/E1 Framer Versions

Requests the T1/E1 Framer hardware and silicon revision numbers.

C constant _T1E1_VERSIONS
Opcode 0x8A
Type Status

Incoming Bytes | 1
Outgoing Bytes | 2

Incoming Data Parameter Description

Byte # Content Description

1 0 Set to 0 for future compatibility.

Outgoing Data Parameter Description

Byte # Content Description
1 Framer Type 1-byte unsigned integer field returning the T1/E1 framer silicon type
2 Framer Revision 1-byte unsigned integer field returning the T1/E1 silicon revision

NoTE: The T1/E1 framer type and revision matrix is dependent on which versions
of the T1/E1 Framer the ZipWire2 EVMs can support.

Table 17-18. Framer Silicon Types

Byte Value Type

Bt8370 Detected
Bt8373 Detected
Bt8375 Detected
Bt8376 Detected
Bt8398 Detected

o ool o w | o

100605C Conexant 17-105
Preliminary Information/Conexant Proprietary and Confidential

17.0 ZipWire2 APl Commands

CN8980

17.8 EVM Specific Commands

ZipWire2 HDSL2/SDSL Transceiver and Framer

17.8 EVM Specific Commands

All EVM commands require the _EVM (0x08) destination (see Table 15-1).

17.8.1 EVM Set LED Bank

Sets the LED Bank value. Should only be issued when LED Update is disabled.

noTE: The LED Bank 2 and Miscellaneous Output register are combined to
generate an 8-bit field. However, the current register value is stored
internally in the software so that writing to either the LED Bank 2 or the
Miscellaneous Output Register will not corrupt the other nibble. In simpler
terms, writing to the LED Bank 2 register will not corrupt the

Miscellaneous Output register.

C constant _EVM_SET_LED
Opcode 0x01
Type Control

Incoming Bytes | 2

Outgoing Bytes | None

Incoming Data Parameter Description

Byte # Content Description
1 LED Bank 1 1-byte value (see Table 9-3)
2 LED Bank 2 1-byte value (see Table 9-4)
17-106 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CN8980 17.0 ZipWire2 APl Commands
ZipWire2 HDSL2/SDSL Transceiver and Framer 17.8 EVM Specific Commands

17.8.2 EVM Set Miscellaneous Output

Sets the Miscellaneous Output Port value. The Miscellaneous Output bits can be
set regardless of the LED Update State.

The Receive Termination pins in the Miscellaneous Output API command are
set by the DSL Configuration Mode API command (Section 17.2.1).

noTE: The LED Bank 2 and Miscellaneous Output register are combined to
generate an 8-bit field. However, the current register value is stored
internally in the software so that writing to either the LED Bank 2 or the
Miscellaneous Output register will not corrupt the other nibble. In simpler
terms, writing to the Miscellaneous Output register will not corrupt the

LED Bank 2 register.
C constant _EVM_SET_MISC_OUT
Opcode 0x02
Type Control

Incoming Bytes | 1
Outgoing Bytes | None

Incoming Data Parameter Description

Byte # Content Description

1 Miscellaneous Output 1-byte value (see Table 9-4)

17.8.3 EVM LED Update State

Sets the LED Update State. The Disable option prevents the internal 8051 from
updating the LEDs. This allows the external Host Processor to control the LEDs.
The option is used in EVM production testing.

C constant _EVM_LED_UPDATE
Opcode 0x03
Type Control

Incoming Bytes | 1
Outgoing Bytes | None

Incoming Data Parameter Description

Byte # Content Description

1 LED Update 0 = Disabled, the 8051 does not update the LEDs
1 = Enabled, the 8051 updates the LEDs

100605C Conexant 17-107
Preliminary Information/Conexant Proprietary and Confidential

17.0 ZipWire2 APl Commands CN8980

17.8 EVM Specific Commands ZipWire2 HDSL2/SDSL Transceiver and Framer

17.8.4 EVM LED and DIP Switch Status

Requests the current LED and DIP Switch settings. The LED query provides a
read-back of what software set the LEDs. Reading the LED state is not possible.

C constant _EVM_LED _DIP_SW_STATUS
Opcode 0x81
Type Status

Incoming Bytes | 1
Outgoing Bytes | 6

Incoming Data Parameter Description

Byte # Content Description

1 0 Set to 0 for future compatibility.

Outgoing Data Parameter Description

Byte # Content Description

1 LED 1 1-byte unsigned integer field returning the LED 1.

2 LED 2 1-byte unsigned integer field returning the LED 2. Only the lower 4 bits are
valid.

3 Misc. Output 1-byte unsigned integer field returning the miscellaneous output register.
Only the lower 4 bits are valid.

4 LED Update State 0 = Disabled
1 = Enabled

5 DIP Switch 3 1-byte unsigned integer field returning the DIP Switch 3 setting.

6 DIP Switch 4 1-byte unsigned integer field returning the DIP Switch 4 setting.

17-108 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

18.0 Electrical and Mechanical

Specifications

The following specifications apply to both the ZipWire2 Transceiver/Framer and

the ZipWire2 AFE.

18.1 Specifications for the ZipWire2
Transceiver/Framer and ZipWire2 AFE

18.1.1 Recommended Operating Conditions

Table 18-1. Recommended Operating Conditions

Parameter Symbol Min | Typ | Max | Units
VAA (5.0)—Analog Supply VAA 475 | 50 | 5.25 \
VIO (3.3 V)—Input/Output VIO 3.00 | 3.3 | 3.60 \
VDD (2.5 V)—Digital Core VDD 2.3 25 | 275 \
NOTE(S): AGND = I0GND = DGND = 0 V; other voltages with respect to 0 V.
100605C Conexant 18-1

Preliminary Information/Conexant Proprietary and Confidential

18.0 Electrical and Mechanical Specifications CN8980
18.1 Specifications for the ZipWire2 Transceiver/Framer and ZipWire2 AFEZip Wire2 HDSL2/SDSL Transceiver and Framer

18.1.2 Absolute Maximum Ratings

Table 18-2. Absolute Maximum Ratings

Parameter Symbol Min Typ Max Units
VAA VAA -0.3 5.0 6.0 Vv
VIO VIO -0.3 33 4.6 Vv
VDD VDD -0.3 25 3.3 Vv
Voltage on any Signal Pin — GND-0.3 — VIO+03V —
Input Current, any pin except supplies IMAX — — +10 mA
Analog Input Voltage — -0.3 — VAA+0.3 v
Digital Input Voltage — -0.3 — VIO +0.3 v
Ambient Operating Temperature Ta -40 25 +85 oC
Junction Temperature Ty — — 125 oC
Storage Temperature (ambient) Tsa -65 — 150 oC
Soldering Temperature TSOL —65 — 260 oC
Vapor Phase Soldering TVSOL —65 — 220 oC
Air Flow 0 — — — L.EP.M.
A NOTE(S): Operation beyond these limits may cause permanent damage to the device. Normal operation is not
CAUTION guaranteed at these extreme conditions.
(G
18-2 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CN8980 18.0 Electrical and Mechanical Specifications
ZipWire2 HDSL2/SDSL Transceiver and Framer 18.2 Thermal Characteristics

18.2 Thermal Characteristics

18.2.1 ZipWire2 AFE

For the 80-pin TQFP (AFE) with .2 m/s of airflow, 8;5~ 23 °C/W.

18.2.2 ZipWire2 Transceiver

For the 15 x 15 mm CABGA (DSP) with .2 m/s of airflow, 84~ 40 °C/W.

18.2.3 ZipWire2 Framer

For the 9 x 9 mm CABGA (Framer) with .2 m/s of airflow, 8;5~ 50 °C/W.

18.2.4 ZipWire2 Transceiver/Framer

For the 27 x 27 mm BGA (Transceiver/Framer) with .2 m/s of airflow,
GJA~ 26 OC/W

100605C Conexant 18-3
Preliminary Information/Conexant Proprietary and Confidential

18.0 Electrical and Mechanical Specifications

CN8980

18.3 Specifications for ZipWire2 Transceiver/Framer Only

18.3 Specifications for ZipWire2

ZipWire2 HDSL2/SDSL Transceiver and Framer

Transceiver/Framer Only

18.3.1 Power Dissipation

Table 18-3 shows the breakdown for the ZipWire2 Transceiver/Framer power

dissipation.

Table 18-3. ZipWire2 Transceiver/Framer Power Dissipation

Parameter Symbol Min Typ Max Units
DSP, +2.5V PDpsp 25 — 900 — mw
DSP, +3.3V PDpsp 3.3 — 115 — mw
FRAMER, +3.3 V PDFRAMER — 53 — mw
18.3.2 DC Characteristics
Table 18-4 lists transceiver DC characteristics.
Table 18-4. Transceiver/Framer DC Characteristics
Parameter Symbol Min Typ Max Units
Digital Inputs
Input High Voltage VIH 2.0 — 5.25 v
Input Low Voltage VIL 0 — 0.8 v
Input Leakage Current [L/1IH — — — pA
Input Capacitance CIN — — — pF
Digital Outputs
Output High Voltage VOH 24 — — V
Output Low Voltage VOL — — 0.4 v
Three-State OQutput Leakage ILK — — — pA
Output Capacitance Cout — — — pF
Digital Bi-directionals
Three-State Output Leakage ILK — — — pA
Input/Output Capacitance CINOUT — — — pF
18-4 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CN8980 18.0 Electrical and Mechanical Specifications
ZipWire2 HDSL2/SDSL Transceiver and Framer 18.3 Specifications for ZipWire2 Transceiver/Framer Only

18.3.3 Host Port RAM Interface Timing

Figure 18-1 illustrates the Host Port RAM interface timing. Table 18-5 lists the
Host Port RAM interface timing.

Figure 18-1. Host Port Interface Timing Diagrams

Host Port Write Timing

clk_sys , \ z \ ('

t

-——— cp —_—

hp_cs & : 1

e 1 it
— ™ o he

hp_we s : I
ty, | E
—_— :<—>: thw

oca ARG ANARUARUARKARN
t

WYY VYWY

M MWW

o-aor NANGAAARAN. ANARCANRRXARNIK

tsa

SW
d

w
[V
W
[V

tha

100605_11

Host Port Read Timing

gy ——

cp

t

sc—»i -— E E
hp_we : “\'\!“\!“\S“
Pt :

.o R D
S 1 A /1

100605_120

100605C Conexant 18-5
Preliminary Information/Conexant Proprietary and Confidential

18.0 Electrical and Mechanical Specifications

CN8980

18.3 Specifications for ZipWire2 Transceiver/Framer Only

Table 18-5. Host Port Ram Interface Timing Table

ZipWire2 HDSL2/SDSL Transceiver and Framer

Symbol Parameter Minimum Maximum Units
tep System clock period ? ? ns
tse Chip select setup to clk_bp_o 2 — ns
the Chip select hold after clk_bp_o 4 — ns
tow Write enable setup to clk_bp_o 2 — ns
thw Write enable hold after clk_bp_o 4 — ns
tsq Data setup to clk_bp_o 2 — ns
tha Data hold after clk_bp_o 4 — ns
tsa Address setup to clk_bp_o 2 — ns
tha Address hold after clk_bp_o 4 — ns
tra Read Access Time — 8 ns
tso Output enable to data driven — 5 ns
toz Output enable to data tristate 6 — ns
18-6 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CNg980

18.0 Electrical and Mechanical Specifications

ZipWire2 HDSL2/SDSL Transceiver and Framer

18.3.4 Master Bus Interface Timing

TBD

18.3.5 DSL Framer Timing Requirements

Input Clock

100605_121

18.3 Specifications for ZipWire2 Transceiver/Framer Only

Symbol Parameter Minimum Maximum Units
— TPCLK, PEXTCLK — — —
1/Tp Frequency 0.064 8.196 MHz
Th Clock Width High 04xTp 06xTp ns
T Clock Width Low 0.4xTp 06xTp ns
Tr Clock Rise Time — 20 ns
Tf Clock Fall Time — 20 ns
Input Clock m
Toom! !
Thid ——» =
Falling Edge i ><><><><
Input Sample "
T
Thig———=1 =
Rising Edge g B
Input Sample ><><><><><><>< ><
100605_122
Symbol Parameter Minimum Maximum Units
— TPDAT, TPINSDAT, TPMFSYNC — — —
Ts Input Setup Time 35 — ns
Thid Input Hold Time 10 — ns
100605C Conexant 18-7

Preliminary Information/Conexant Proprietary and Confidential

18.0 Electrical and Mechanical Specifications

CN8980

18.3 Specifications for ZipWire2 Transceiver/Framer Only

18.3.6 DSL Framer Switching Characteristics

Output Clock

Falling Edge
Outputs

Rising Edge
Outputs

100605_123

ZipWire2 HDSL2/SDSL Transceiver and Framer

Symbol Parameter Minimum Maximum Units
— RPCLK, RPDPLLCLK — — —

1/Tp Frequency 0.064 8.196 MHz
Th Clock Width High Tp/2 -20 Tp/2 + 20 ns
T Clock Width Low Tp/2 -20 Tp/2 + 20 ns
Tr Clock Rise Time — 15 ns
Tt Clock Fall Time — 15 ns
— RPDAT, RPDROP, RPMFSYNC, TPMFSYNC — — —
Thid Output Data Hold 0 — ns
Tdly Output Data Delay — 25 ns

18-8 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CN8980 18.0 Electrical and Mechanical Specifications

ZipWire2 HDSL2/SDSL Transceiver and Framer 18.4 Specifications for ZipWire2 AFE Only

18.4 Specifications for ZipWire2 AFE Only

The following specifications apply only to the ZipWire2 AFE.

18.4.1 Power Dissipation

Table 18-6 shows the breakdown for the ZipWire2 AFE power consumption for
1,552 kbps OPTIS and 2,320 kbps G.shdsl Symmetric Mask mode. Power
consumption includes the power delivered to the line, ~100 mW.

The power dissipation for other data rates is: TBD.

Table 18-6. ZipWire2 AFE Power Dissipation

Parameter Condition Symbol Min Typ Max Units

AFE, +5.0V OPTIS PDarg — | 1,000 — mw

G.shds! 50 — [70 | = | mw

AFE, +3.3V — PDare — 129 — mw
3.3

18.4.2 DC Characteristics

Table 18-7. AFE DC Characteristics

Parameter Symbol Min Typ Max Units
Digital Inputs
Input High Voltage VIH 0.8VIO — 5.5 v
Input Low Voltage VIL GND — 10.1VDD v
Input Leakage Current [IL/11H -10 — 10 uA
Input Capacitance CIN — 2.9 — pF

Digital Outputs

Output High Voltage VOH 0.9VIO — VIO v
Output Low Voltage VOL GND — | 0.1VIO v
Three-State Output Leakage ILK 10 — 10 HA
Output Capacitance CIN — 3.1 — pF

Digital Bidirectionals

Three-State Output Leakage ILK -10 — 10 HA
Input/Output Capacitance CINOUT — 3.0 — pF
100605C Conexant 18-9

Preliminary Information/Conexant Proprietary and Confidential

18.0 Electrical and Mechanical Specifications CN8980

18.4 Specifications for ZipWire2 AFE Only ZipWire2 HDSL2/SDSL Transceiver and Framer
18.4.3 PSD Specifications
18.4.3.1 2B1Q PSD

Figure 18-2. Transmit Pulse Template for Two- and Three-Pair Systems; Normalized Pulse Mask
(Source ETSI TS 101 135, Formerly ETR 152)

-0,4T 04T
B=1,07 — | |
C=1,00
D=0,93

T =2,55 us at 784 kbps
1257 T=1,71 us at 1168 kbps
)))) __E=0,03
A=001——xd | | | __ fl ____________________] A ‘T—é\:o,m
F=-0,01 " —F=-0,01
’)) |
0 \T/H———" s ~ H=-0,05
— G=-0,16 ‘
-0,6T 0,5T 14T 50T

100605_132

Table 18-8. Transmit Pulse Template for Two- and Three-Pair Systems (Source ETSI TS 101 135, Formerly ETR 152)

Quaternary Symbols
Normalized Level
+3 +1 -1 -3
A 0.01 0.0264 0.0088 -0.0088 -0.0264
B 1.07 2.8248 0.9416 -0.9416 -2.8248
C 1.00 2.6400 0.8800 -0.8800 -2.6400
D 0.93 2.4552 0.8184 -0.8184 -2.4552
E 0.03 0.0792 0.0264 -0.0264 -0.0792
F -0.01 -0.0264 -0.0088 0.0088 0.0264
G -0.16 -0.4224 -0.1408 0.1408 0.4224
H -0.05 -0.1320 -0.0440 0.0440 0.1320
18-10 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CN8980
ZipWire2 HDSL2/SDSL Transceiver and Framer

18.0 Electrical and Mechanical Specifications
18.4 Specifications for ZipWire2 AFE Only

Figure 18-3. Transmit Pulse Template for One-Pair Systems (Source ETSI TS 101 135, Formerly ETR 152)

-0,4T 04T

T = 0,862 us at 2320 kbps

A=001 ——— | | | 1‘—E=Q4F =001
F=-0,01 I_H=—O,05)
G=-0,20
-0,6T 05T 14T 50T
100605133
Table 18-9. Transmit Pulse Template for One-Pair Systems (Source ETSI TS 101 135, Formerly ETR 152)
Quaternary Symbols
Normalized Level
+3 +1 -1 -3
A 0.01 0.0250 V 0.0083 V -0.0083 V -0.0250 V
B 1.07 2.6750V 0.8917V -0.8917V -2.6750 'V
C 1.00 2.500V 0.8333V -0.8333V -2.5000V
D 0.93 2.3250V 0.7750 vV -0.7750 V -2.3250 'V
E 0.04 0.1000V 0.0333V -0.0333V -0.1000 V
F -0.01 -0.0250 V -0.0083 V 0.0083 V 0.0250 V
G -0.20 -0.5000 V -0.1667 V 0.1667 V 0.5000 V
H -0.05 -0.1250V -0.0417V 0.0417V 0.1250 V
18.4.3.2 OPTIS
TBD
18.4.3.3 G.shdsl
TBD
100605C Conexant 18-11

Preliminary Information/Conexant Proprietary and Confidential

18.0 Electrical and Mechanical Specifications

CN8980

18.4 Specifications for ZipWire2 AFE Only

18.4.4 Pulse Template Specifications

These specifications are only required for the HDSL1 (2B1Q).

ZipWire2 HDSL2/SDSL Transceiver and Framer

Figure 18-4. Upper Bound of the Average PSD of a 392 kbaud System (Source ETSI TS 101 135, Formerly ETR 152)

dBm/Hz
A

-20

- 37 dBm/Hz

40 ‘

80 [SRR

~60 [~ R

100 f-------mom- -

—120 f- oo

Figure 18-5.

100605_135

Upper Bound of the Average PSD of a 584 kbaud System (Source ETSI TS 101 135, Formerly ETR 152)

dBm/Hz
A
-20 ; ;
i -39 dBm/Hz
— 40 |r— ——— —
—60 [——— e
Y T
—100 -~ R P
3 Floor at —11§dBm/Hz
—120 |jr————— — — 1‘ 777777777
1 1 1
e3 ed e5
100605_134
18-12 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

18.0 Electrical and Mechanical Specifications

CNg980

18.4 Specifications for ZipWire2 AFE Only

ZipWire2 HDSL2/SDSL Transceiver and Framer

Figure 18-6. Upper Bound of the Average PSD of a 1,160 kbaud System (Source ETSI TS 101 135, Formerly ETR 152)

dBm/Hz

A

|
!
o o (@] o
3\ < © [e¢]
| | | |

—-100
-120
-130

100605_136

Conexant 18-13

Preliminary Information/Conexant Proprietary and Confidential

100605C

18.0 Electrical and Mechanical Specifications CN8980
18.5 Mechanical Specifications ZipWire2 HDSL2/SDSL Transceiver and Framer

18.5 Mechanical Specifications

Figure 18-7. Package Outline, 27 x 27 mm, Two-Layer Chip, 314-Pin Ball Grid Array (BGA)

27.000
Triangle 24.000 R 500
Pin #1 & |osom|p|als TYP 3 Places
Indicator
18.000
N
o O
/ 27.000
24.000
18.000
3
2 2.000
TYP 4 Places E
Ejector Pin
(Ej) @
! &
,@, _ o
\ ©
\/ e
-C-
R 1.7 mm TOP VIEW Engraving . 1
TYP 4 Places Cavity ID 600 £ 100 —» <_' 50
(1.414 Chamfer /1025 C | PV =E-
Optional)
le——— 24,134 7/ 10.35(C
PKG ¢ ‘ 7
12.065 By
—= ’471.270 — [
E 2018 16 14 12 110 :
|19 17 15 13 1 1 [|
d =
$6000000000000000006 |a
0000000000000000000O0 |B ~r1
00000000000000000000 |c |
0000000000000000000O0 (D)
0000 000000 |[E ~
0000 000000 [F -1
24.134 0000 0000 |a 15° LD
0000 0000000 0000 [H LK
PKG 0000 0000000 00000 |J —*7— ®
¢ 0000 000000000000 |K
0000 0000000 00000 [L -
5606 00060660 0060060 |m .520 + .070 (2 and 4 Layer) |
0000 0o00lboo0 00000 |N -660 = .070 (6 Layer)
12.065 0000 0000000 0000 |pP — 1.100 = .050
R
8888 8888 T 2.220 +.220 (2 and 4 Layer) —| -—
0000000000000000000O0 |u 3.620 + .220 (6 Layer)
L 00000000000 00000000O0 |V SIDE VIEW
-FO0QO00000000000000000 |W
f 0 0000000000000000 |¥
“\ e
1.270
@ .75+ .15
4 Perimeter Rows
@ 2.308|c[A®[B G| 1 Bals
@.100®|C (1.27 mm Pitch)
BOTTOM VIEW
100605_128
18-14 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CNg980

18.0 Electrical and Mechanical Specifications

ZipWire2 HDSL2/SDSL Transceiver and Framer

Figure 18-8. Package Outline, 15 x 15 mm, Two-Layer Chip, 208-Pin CABGA

18.5 Mechanical Specifications

| |
D
17 16 1514 131211 10 9 8 7 6 5 4 3 2 1
f&ooooooooooooooo&—xx —
D 000000000000 0000O0 |8
& 000000000000 0000O0 |c
D 00000000000000000 |b
—+t 0000 ocooo |E
D _f ocoo0o0 oooo |F
D e ocoo0o0 oooo0 |a
ocoo0o0 o000 |H
E D ocoo0o0 oooo |4 E1
ocoo0o0 ocoo00 |k
D ocoo0o0 oooo0 |t
D ocoo0o0 0000 |m
ocoo0o0 0000 |n
D 000000000000 0000O0 |P
000000000000 00000 |r
D 000000000000 00000 |1
OOTTOOOOOOOOOﬂOOO—U L
L =l
= =
TOP VIEW
BOTTOM VIEW
(208 Solder Balls)
\CAVAVACAVAWAWAWAW)
— Al
A2 = 1 . Millimeters Inches
Dim.
— Min. Max. | Min. Max.
A 1.50 1.059
N A1l 0.31 041 | 0.12 0.016
5 A2 0.65 0.76 | 0.026 0.030
D 15.00 REF. 0.591 REF.
D D1 12.80 REF. 0.504 REF.
D E 15.00 REF. 0.591 REF.
D E1 12.80 REF. 0.504 REF.
D M 17
D N 208
e 0.80 REF. 0.031 REF.
- b 0.48 REF. 0.018 REF.
| c C 0.29 0.39 | 0.011 0.015
Coplanarity 0.12 MAX. 0.005 MAX.
™A Warpage 0.10 MAX. 0.004 MAX.
Ref: 208-Pin CABGA (GP00-D576-001
SIDE VIEW
100605_129
100605C Conexant 18-15

Preliminary Information/Conexant Proprietary and Confidential

18.0 Electrical and Mechanical Specifications

CN8980

18.5 Mechanical Specifications

ZipWire2 HDSL2/SDSL Transceiver and Framer

Figure 18-9. Package Outline, 9 x 9 mm Two-Layer Chip, 81-Pin CABGA

b D1
987654321
D OOO0O0000OG A
D O000O0O0O0O0O0 B
D J_ O000O0O0O0O0O0 c
D —OO0O0000000 D
E D —O 00000000 E E1
D T O000O0O0O00O0 F
D e O000O0O0O0O0O0 G
D O000O0O0O0O0O0 H
D _|_|O T i) O00O0 ﬂ O'_I_ J
e —| [w—Db
TOP VIEW _’I I‘_ ‘ ‘
[BOTTOM VIEW
S ASASATASAATAwE: (81 SOLDER BALLS)
Millimeters Inches*
— Al DIM. Min. Max. Min. Max.
A2 _ﬁ A 1.50 0.059
[At 0.31 0.41 0.012 0.016
% A2 0.65 0.75 0.026 0.030
N D 9.00 REF. 0.354 REF.
D D1 6.40 REF 0.252 REF
g E 9.00 REF. 0.354 REF.
D E1 6.40 REF. 0.252 REF.
D M 9
p N 81
| e 0.80 REF. 0.031 REF.
™ ¢ b 0.46 REF. 0.018 REF.
A c 0.29 0.39 0.011 0.015
Coplanarity 0.12 Max. 0.005 Max.
SIDE VIEW Warpage 0.10 Max. 0.004 Max.
Ref: 81-PIN CBGA (GP00-D582-001)
100605_127
18-16 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

CN8980
ZipWire2 HDSL2/SDSL Transceiver and Framer

18.0 Electrical and Mechanical Specifications

18.5 Mechanical Specifications

Figure 18-10. Package Outline for the 80-Pin Thin Quad Flat Pack (TQFP)

D
D1 |
Pin #1 1 [)2 |
Ref. Mark D
3
=
=
D1 D3 :
=
=
p==
i
hY
BOTTOM
Millimeters Inches
Dim. Min. Max. | Min. Max.
A 1.20 MAX. 0.047 MAX.
DETAILB
See Aq 0.05 0.15 | 0.002 0.006
Ao 0.95 1.05 | 0.040 0.041
D 15.75 16.25 | 0.620 0.640
D4 13.90 14.10 | 0.547 0.555
Do 12.35 REF. 0.486 REF.
A A1 D3 6.50 REF. 0.256 REF.
l L 0.45 0.75 | 0.018 0.030
L4 1.00 REF. 0.039 REF.
f e 0.65 REF. 0.026 REF.
b 0.32 REF. 0.013 REF.
c 0.09 0.20 | 0.004 0.008
DETAIL B by— Coplanarity | 0.10 MAX. 0.004 MAX.
Ref. 80-Pin ETQFP (GP00-D537)**

100605_124

100605C

Conexant

Preliminary Information/Conexant Proprietary and Confidential

18-17

18.0 Electrical and Mechanical Specifications CN8980
18.5 Mechanical Specifications ZipWire2 HDSL2/SDSL Transceiver and Framer

18-18 Conexant 100605C
Preliminary Information/Conexant Proprietary and Confidential

Appendix A: Acronyms and

Abbreviations

ADC (A/D)
AFE

AIS

API

BER

BGA

BP

BT
Channel Unit
CRC-N

Cu

DAC (D/A)
DFE

DIP

Downstream

DPLL
DSL
DSL Framer
DSP
EC
EOC
EVM
FEBE
FEXT
FFE
FIFO
FR
H2TU

Analog-to-Digital Converter

Analog Front End

Alarm Indication Signal
Application Programming Interface
Bit Error Rate

Ball Grid Array

Bit Pump

Bit Pump Transceiver

HDSL Framer (name comes from HDSL1 Framer)
Cyclic Redundancy Check-N
Channel Unit or HDSL Framer
Digital-to-Analog Converter
Decision Feedback Equalizer

Dual In-Line Package

From the HTU-C towards the HTU-R (includes
regenerators)

Digital Phase Lock Loop
Digital Subscriber Line
ZipWire2 DSL Framer Block
Digital Signal Processing

Echo Canceller

Embedded Operations Channel
Evaluation Module

Far End Block Error (the far end reported a CRC error)
Far End Cross Talk

Feed Forward Equalizer
First-In First-Out

Framer

HDSL2 Terminal Unit

100605C

Conexant

A-1

Preliminary Information/Conexant Proprietary and Confidential

Appendix A : Acronyms and Abbreviations CN8980
ZipWire2 HDSL2/SDSL Transceiver and Framer

HDLC High-Level Data Link Gontroller
HDSL High-Bit-Rate Digital Subscriber Line
HTU HDSL Terminal Unit
HTU-C or COT or LTU Central Office Terminal or Local Terminal Unit
HTU-R or RT or NTU Remote Terminal or Network Terminal Unit
LED Light Emitting Diode
LOS Loss of Signal
NEXT Near End Cross Talk
OOF Out of Frame
P2MP Point to Multipoint
PAM Pulse Amplitude Modulation
PCM Pulse Code Modulation
PLL Phase Lock Loop
PRA Primary Rate Access
PRBS Pseudo-Random Bit Sequence
RAM Random Access Memory
ROM Read Only Memory
TCM Time Code Modulation
TQFP Thin Quad Flat Pack
Transceiver ZipWire2 DSP/Transceiver Block
UART Universal Asynchronous Receive Transmit
ulp User Interface Program
Upstream From the HTU-R towards the HTU-C (includes
regenerators)
A-2 Conexant 100605C

Preliminary Information/Conexant Proprietary and Confidential

=
~ CONEXANT"

—” What's next in communications technologies

Further Information
literature @ conexant.com

(800) 854-8099 (North America)
(949) 483-6996 (International)
Printed in USA

World Headquarters
Conexant Systems, Inc.
4311 Jamboree Road
Newport Beach, CA
92660-3007

Phone: (949) 483-4600
Fax 1: (949) 483-4078
Fax 2: (949) 483-4391

Americas

U.S. Northwest/

Pacific Northwest — Santa Clara
Phone: (408) 249-9696

Fax: (408)249-7113

U.S. Southwest — Los Angeles
Phone: (805) 376-0559
Fax: (805) 376-8180

U.S. Southwest — Orange County
Phone: (949) 483-9119
Fax: (949) 483-9090

U.S. Southwest — San Diego
Phone: (858) 713-3374
Fax: (858) 713-4001

U.S. North Central - Illinois
Phone: (630) 773-3454
Fax: (630) 773-3907

U.S. South Central — Texas
Phone: (972) 733-0723
Fax: (972) 407-0639

U.S. Northeast — Massachusetts
Phone: (978) 367-3200
Fax: (978) 256-6868

U.S. Southeast — North Carolina
Phone: (919) 858-9110
Fax: (919) 858-8669

U.S. Southeast — Florida/
South America

Phone: (727) 799-8406
Fax: (727) 799-8306

U.S. Mid-Atlantic - Pennsylvania
Phone: (215) 244-6784
Fax: (215)244-9292

Canada - Ontario
Phone: (613) 271-2358
Fax: (613) 271-2359

Europe

Europe Central — Germany
Phone: +49 89 829-1320
Fax: +49 89 834-2734

Europe North - England
Phone: +44 1344 486444
Fax: +44 1344 486555

Europe - Israel/Greece
Phone: +972 9 9524000
Fax: 497299573732

Europe South — France
Phone: +33 141443651
Fax: 433141443690

Europe Mediterranean — Italy

Phone: +39 02 93179911
Fax: 4390293179913

Europe — Sweden
Phone: +46 (0) 8 5091 4319
Fax: 446 (0) 8 590 041 10

Europe - Finland
Phone: +358 (0) 9 85 666 435
Fax: 4358 (0) 9 85 666 220

Asia — Pacific

Taiwan
Phone: (886-2) 2-720-0282
Fax: (886-2) 2-757-6760

Australia
Phone: (61-2) 9869 4088
Fax: (61-2) 9869 4077

China - Central
Phone: 86-21-6361-2515
Fax: 86-21-6361-2516

China — South
Phone: (852) 2 827-0181
Fax: (852) 2 827-6488

China — South (Satellite)
Phone: (86) 755-5182495

China — North
Phone: (86-10) 8529-9777
Fax: (86-10) 8529-9778

India
Phone: (91-11) 692-4789
Fax: (91-11) 692-4712

Korea
Phone: (82-2) 565-2880
Fax: (82-2) 565-1440

Korea (Satellite)
Phone: (82-53) 745-2880
Fax: (82-53) 745-1440

Singapore
Phone: (65) 737 7355
Fax: (65) 737 9077

Japan
Phone: (81-3) 5371 1520
Fax: (81-3) 5371 1501

www.conexant.com

	CN8980 ZipWire2 HDSL2/SDSL Transceiver and Framer
	Functional Block Diagram
	Distinguishing Features
	Applications

	Table of Contents
	List of Figures �xiii
	List of Tables �xvii
	1.0 Introduction �1-1
	2.0 System Overview �2-1
	3.0 Application Interfaces �3-1
	3.12.1 Customers who do not wish to modify 8051 code �3-18
	3.12.2 Customers who wish to modify 8051 code to control other devices �3-18
	3.12.3 Customers who wish to modify low-level DSL Framer code �3-18

	4.0 Built-In 8051 Core Detailed Description �4-1
	4.4.1 8051 Timer/Counter Description �4-5
	4.5.1 Master Bus Microprocessor Interface �4-6
	4.5.2 Host Port RAM Interface �4-6
	4.5.3 RS232 Serial Interface �4-7
	4.5.4 Group Talk Interface �4-7
	4.6.1 Summary �4-8
	4.6.2 Download Description �4-9
	4.6.3 Dip Switch #2—DEVADR and BOOTOP Pins �4-9
	4.6.4 Download Protocol Overview �4-10
	4.6.5 Download Times �4-10
	4.6.6 Download and Device Validation �4-11
	4.6.7 Download Group Master Device �4-11
	4.6.8 Download Group Slave Device �4-11
	4.6.9 Download Single Processor Configuration �4-12
	4.6.10 Download Dual Processor Configuration �4-13
	4.6.11 Download API Commands �4-15
	4.6.12 Download Examples �4-16

	5.0 ZipWire2 DSP Detailed Description �5-1
	6.0 ZipWire2 Framer Detailed Description �6-1
	6.2.1 DATA FIFO �6-2
	6.3.1 General HDSL Functions �6-2
	6.3.2 HDSL Receiver Functionality �6-4
	6.3.3 HDSL Transmitter Functionality �6-6
	6.4.1 PCM Interface �6-7
	6.4.2 General PCM Functions �6-7
	6.4.3 PCM Receiver �6-8
	6.4.4 PCM Transmitter �6-10
	6.5.1 Performance Monitoring �6-11
	6.5.2 PRBS and BER Meter �6-11

	7.0 Hardware Interfaces �7-1
	7.2.1 Continuous Time Filter and Line Driver Control �7-3
	7.2.2 Compromise Hybrid, Matching Resistors, and Transformer �7-4
	7.2.3 Surge Protection �7-5

	8.0 Pin Descriptions �8-1
	8.1.1 ZipWire2 Transceiver/Framer Pin Assignments �8-2
	8.1.2 ZipWire2 Transceiver Pin Assignments �8-3
	8.1.3 ZipWire2 Framer Pin Assignments �8-4
	8.1.4 ZipWire2 AFE Pin Assignments �8-5
	8.2.1 ZipWire2 Transceiver/Framer Signal Descriptions �8-6
	8.2.2 ZipWire2 AFE Signal Descriptions �8-15

	9.0 EVM Specific �9-1
	10.0 Software Overview �10-1
	11.0 Embedded 8051 Software Features �11-1
	11.1.1 Activation State Manager (ASM) �11-1
	11.1.2 Pre-Activation �11-2
	11.1.3 DSP Training �11-3
	11.1.4 DSL Line Coding �11-3
	11.1.5 Frame Format �11-3
	11.3.1 DSL Framer Tx PCM BER Meter �11-6
	11.3.2 DSL Framer Rx PCM BER Meter �11-6
	11.3.3 Bit-Pump-Only BER Meter �11-6
	11.5.1 Sync Status �11-9
	11.5.2 Error Status Reporting �11-9
	11.5.3 Tx/Rx FIFO Error Handling �11-9
	11.5.4 DPLL Error Handling �11-10
	11.5.5 Pair ID Termination (E1 Mode) �11-11
	11.5.6 Indicator Bit Termination �11-11
	11.9.1 Feature Overview �11-13
	11.9.2 Does Not Support �11-13
	11.9.3 EOC General Overview �11-13
	11.9.4 EOC Frame Format �11-14
	11.9.5 EOC Unit Addresses �11-15
	11.9.6 EOC Message IDs �11-16
	11.10.1 EOC Transmit �11-18
	11.10.2 EOC Receive �11-20
	11.10.3 EOC Transaction Time �11-22
	11.10.4 EOC Transaction Time-Out �11-22
	11.10.5 EOC Message Control �11-22
	11.10.6 EOC Transmit Queue �11-23
	11.10.7 EOC Receive Queue �11-24
	11.10.8 EOC Proprietary Messages �11-24
	11.10.9 EOC Application State Machine �11-26
	11.10.10 EOC API Commands �11-28

	12.0 Embedded 8051 Code �12-1
	12.12.1 HTU-C Activation �12-10
	12.12.2 HTU-R Activation �12-12

	13.0 HDSL2 Standards Compliance �13-1
	13.1.1 Four-Level 2B1Q Mapping (HDSL1) �13-1
	13.1.2 Sixteen-Level Optis Mapping (HDSL2) �13-2

	14.0 DSL Frame Structure �14-1
	14.2.1 HDSL2 _1T1 �14-3
	14.2.2 HDSL2 _1E1 �14-3
	14.2.3 HDSL2—Single Pair �14-4
	14.3.1 HDSL1 _2T1 �14-7
	14.3.2 HDSL1_2E1 �14-8
	14.3.3 HDSL1_3E1 �14-9
	14.3.4 HDSL1_1T1 �14-10
	14.3.5 HDSL1_1E1 �14-10
	14.3.6 HDSL1_DSL_CUSTOM �14-10

	15.0 API: Microprocessor Communicator Channel Protocol �15-1
	15.2.1 No Peer-to-Peer Protocol �15-3
	15.3.1 Incoming Message Structure �15-4
	15.3.2 Outgoing Message Structure �15-4
	15.3.3 Header Section–Destination Field �15-5
	15.3.4 Header Section—Reserved Byte or ACK Status �15-6
	15.3.5 Header Section–Message Length Field �15-8
	15.3.6 Data Section–Data Parameter Field �15-8
	15.4.1 INTR_HOST and INTR_8051 Registers �15-10
	15.4.2 Host Port Acknowledge Register �15-11
	15.4.3 Host Port Status Registers �15-11
	15.5.1 Multi Device System �15-14
	15.6.1 Host Processor to 8051 Processor Message Structure �15-15
	15.6.2 RS232 Acknowledge Message Structure �15-16
	15.6.3 ZipWire2 8051 Processor to Host Processor Status Message Structure �15-16
	15.6.4 RS232 Message Transfer Protocol �15-17
	15.7.1 RS232 Multi-Device System �15-19
	15.7.2 Group Talk Serial Interface Protocol �15-19
	15.7.3 Boot RAM Software Download �15-19

	16.0 ZipWire2 API Configuration �16-1
	16.2.1 Scrambler/Descrambler Taps �16-3
	16.2.2 CRC Tap �16-3
	16.2.3 Sync Word �16-4
	16.2.4 Pair ID (Z-Bits) �16-4

	17.0 ZipWire2 API Commands �17-1
	17.2.1 API Command Names �17-6
	17.3.1 DSL System Enable �17-7
	17.3.2 DSL System Configuration �17-9
	17.3.3 DSL Activation �17-11
	17.3.4 Bit Pump Training Mode �17-14
	17.3.5 DSL Pre-Activation Mode �17-15
	17.3.6 DSL Startup Mode �17-16
	17.3.7 LOST Time (Tsilent) Period �17-17
	17.3.8 DSL Reset �17-18
	17.3.9 DSL Framer—PCM Configuration �17-19
	17.3.10 PCM Multi-Frame Length �17-20
	17.3.11 Single Pair Configuration �17-20
	17.3.12 DSL Data Rate �17-21
	17.3.13 DSL Status—Dynamic �17-22
	17.3.14 DSL Status—Static �17-25
	17.3.15 Versions �17-26
	17.3.16 Line Attenuation �17-29
	17.3.17 Noise Margin �17-30
	17.3.18 EOC Send Command �17-31
	17.3.19 EOC Get Message Status �17-31
	17.3.20 EOC Set Database Data �17-32
	17.3.21 EOC Get Database Data �17-32
	17.3.22 EOC Set Message Control �17-33
	17.3.23 EOC Read Receive Queue �17-34
	17.3.24 EOC Set Proprietary Length �17-35
	17.3.25 Download Start (Length) �17-35
	17.3.26 Download Data �17-36
	17.3.27 Download End (Checksum) �17-36
	17.3.28 Download Slave �17-37
	17.4.1 Read DSL Control Commands �17-38
	17.4.2 Stage Number �17-39
	17.4.3 Read Configuration Pins �17-40
	17.4.4 AFE Setting �17-41
	17.4.5 Analog Front End (AFE) Configuration �17-42
	17.4.6 DSL Force Deactivate �17-43
	17.4.7 Transmit External Data �17-43
	17.4.8 Test Modes �17-44
	17.4.9 Bit Pump Transmit Isolated Pulses Test Mode �17-45
	17.4.10 Bit Pump Transmit Fixed Pattern Test Mode �17-46
	17.4.11 Loopbacks �17-47
	17.4.12 Bit Pump BER Meter State �17-49
	17.4.13 Bit Pump BER Meter Results �17-50
	17.4.14 ERLE Test Mode �17-52
	17.4.15 ERLE Results �17-53
	17.4.16 Auxiliary CLK Select �17-54
	17.4.17 PCM Clock Configuration �17-54
	17.4.18 DSL Framer Transmit PCM BER Meter Results �17-55
	17.4.19 DSL Framer Receive PCM BER Meter Results �17-57
	17.4.20 Transmit PCM BER State �17-58
	17.4.21 Receive PCM BER State �17-58
	17.4.22 PRBS Configure �17-59
	17.4.23 Fill Pattern (CONST_FILL) �17-60
	17.4.24 Data Bank Contents �17-61
	17.4.25 Transmit PCM Mapper Value �17-62
	17.4.26 Transmit PCM Mapper Write �17-63
	17.4.27 Receive PCM Mapper Value �17-63
	17.4.28 Receive PCM Mapper Write �17-64
	17.4.29 Transmit HDSL Mapper Value �17-65
	17.4.30 Transmit HDSL Mapper Write �17-66
	17.4.31 Receive HDSL Mapper Value �17-66
	17.4.32 Receive HDSL Mapper Write �17-67
	17.4.33 Clear ZipWire2 Error Counters �17-68
	17.4.34 Read ZipWire2 Operational Error Counters �17-69
	17.4.35 Read ZipWire2 HDSL Performance Error Counters �17-70
	17.4.36 Read ZipWire2 PCM Performance Error Counters �17-71
	17.4.37 Read ZipWire2 System Performance Error Counters �17-72
	17.4.38 Available Seconds and Total Seconds �17-73
	17.4.39 Inject DSL CRC Error �17-74
	17.4.40 Set CRC/FEBE Error History State �17-75
	17.4.41 Query CRC/FEBE History Interval In-Progress �17-76
	17.4.42 CRC Error History at Interval 1 �17-77
	17.4.43 CRC Error History at Interval 2 �17-78
	17.4.44 CRC Error History at Interval 3 �17-79
	17.4.45 FEBE Error History at Interval 1 �17-80
	17.4.46 FEBE Error History at Interval 2 �17-81
	17.4.47 FEBE Error History at Interval 3 �17-82
	17.5.1 Signal Level Meter �17-83
	17.5.2 Timing Recovery Offset �17-84
	17.5.3 Bit Pump Reverse Tip/Ring �17-85
	17.5.4 Scrambler/Descrambler Configuration �17-85
	17.5.5 Write AFE Transmit Gain �17-87
	17.5.6 Read AFE Transmit Gain �17-88
	17.5.7 DSL Framer Transmit Path Reset �17-89
	17.5.8 DSL Framer Receive Path Reset �17-90
	17.5.9 DSL Framer—HDSL Configuration �17-91
	17.5.10 Mask Host Port Interrupt (INTR_HOST) �17-92
	17.5.11 DSL Framer Auto Water Level �17-93
	17.5.12 DSL Framer Transmit Water Level �17-93
	17.5.13 DSL Framer Receive Water Level �17-94
	17.5.14 DSL Framer DPLL Clock Generator �17-95
	17.6.1 Write Register �17-97
	17.6.2 Read Register �17-98
	17.6.3 Write AFE Register �17-98
	17.6.4 Read AFE Register �17-99
	17.7.1 T1/E1 Framer Configure �17-100
	17.7.2 T1/E1 Framer Frame Format �17-100
	17.7.3 T1/E1 Framer Transmit AIS �17-101
	17.7.4 T1/E1 Framer Output Mode �17-101
	17.7.5 T1/E1 Framer Receive Termination �17-102
	17.7.6 T1/E1 Framer Loopbacks �17-103
	17.7.7 T1/E1 Read Framer Control Commands �17-104
	17.7.8 T1/E1 Framer Versions �17-105
	17.8.1 EVM Set LED Bank �17-106
	17.8.2 EVM Set Miscellaneous Output �17-107
	17.8.3 EVM LED Update State �17-107
	17.8.4 EVM LED and DIP Switch Status �17-108

	18.0 Electrical and Mechanical Specifications �18-1
	18.1.1 Recommended Operating Conditions �18-1
	18.1.2 Absolute Maximum Ratings �18-2
	18.2.1 ZipWire2 AFE �18-3
	18.2.2 ZipWire2 Transceiver �18-3
	18.2.3 ZipWire2 Framer �18-3
	18.2.4 ZipWire2 Transceiver/Framer �18-3
	18.3.1 Power Dissipation �18-4
	18.3.2 DC Characteristics �18-4
	18.3.3 Host Port RAM Interface Timing �18-5
	18.3.4 Master Bus Interface Timing �18-7
	18.3.5 DSL Framer Timing Requirements �18-7
	18.3.6 DSL Framer Switching Characteristics �18-8
	18.4.1 Power Dissipation �18-9
	18.4.2 DC Characteristics �18-9
	18.4.3 PSD Specifications �18-10
	18.4.4 Pulse Template Specifications �18-12

	Appendix A : Acronyms and Abbreviations �A-1

	List of Figures
	List of Tables
	1.0 Introduction
	1.1 References

	2.0 System Overview
	Figure 2�1. High-Level Functional Diagram
	2.1 ZipWire2 Transceiver/Framer Functional Summary
	Figure 2�2. ZipWire2 Transceiver/Framer Detailed Block Diagram

	2.2 ZipWire2 Transceiver/DSP Functional Summary
	Figure 2�3. ZipWire2 Transceiver/DSP Detailed Block Diagram

	2.3 ZipWire2 DSL Framer Functional Summary
	Figure 2�4. DSL Framer Detailed Block Diagram

	2.4 ZipWire2 AFE Functional Summary
	Figure 2�5. ZipWire2 AFE Block Diagram

	2.5 ZipWire2 Transmit Path
	Figure 2�6. Detailed Transmit Data Path Block Diagram

	2.6 ZipWire2 Receive Path
	Figure 2�7. Detailed Receive Data Path Block Diagram

	3.0 Application Interfaces
	3.1 Using Internal 8051 Processor Only
	Figure 3�1. Single Pair Hardware Configuration
	Figure 3�2. Multi-Pair Hardware Configuration

	3.2 Using an External Embedded Host Processor
	Figure 3�3. Group Master/Group Slave Multi-Pair Hardware Configuration
	Figure 3�4. Master Multi-Pair Hardware Configuration
	Figure 3�5. Redundant Group Master Multi-Pair Hardware Configuration

	3.3 Multi-Pair DSL Framer Configuration (Cascade Mode)
	Figure 3�6. Multi-Pair Configuration—PCM Bused
	Figure 3�7. Multi-Pair Configuration—PCM Cascade

	3.4 ZipWire2 Transceiver/Framer to Bt8370 T1/E1 Interface
	Figure 3�8. ZipWire2 Transceiver/Framer to Bt8370 T1/E1 Interface

	3.5 DSL Framer to CN8228 (ATM Phy) Interface
	Figure 3�9. DSL Framer to CN8228 (ATM Phy) Interface Diagram

	3.6 DSL Framer Bypass to CN8228 (ATM Phy) Interface
	Figure 3�10. DSL Framer Bypass to CN8228 (ATM Phy) Interface Diagram

	3.7 Dual Mode CN8228 (ATM Phy) Interface
	Figure 3�11. Dual Mode CN8228 (ATM Phy) Interface Diagram

	3.8 DSL Framer to MUSYCC Interface
	Figure 3�12. DSL Framer to MUSYCC Interface Diagram

	3.9 DSL Framer Bypass to MUSYCC Interface
	Figure 3�13. DSL Framer Bypass to MUSYCC Interface Diagram

	3.10 Dual Mode MUSYCC Interface
	Figure 3�14. Dual Mode MUSYCC Interface Diagram

	3.11 Multiple ZipWire2 Devices to CN8228 or MUSYCC Interface
	Figure 3�15. Multiple ZipWire2 Devices to CN8228 or MUSYCC Interface Diagram
	Figure 3�16. Multiple ZipWire2 Devices to CN8228 or MUSYCC Interface Diagram

	3.12 Deliverables
	3.12.1 Customers who do not wish to modify 8051 code
	3.12.2 Customers who wish to modify 8051 code to control other devices
	3.12.3 Customers who wish to modify low-level DSL Framer code

	4.0 Built-In 8051 Core Detailed Description
	4.1 Internal 8051 Data Space Memory Map
	Table 4�1. Internal 8051 Memory Map�

	4.2 Internal 8051 Interrupt Mapping
	Table 4�2. Internal 8051 Interrupt Mapping

	4.3 ZipWire2 Transceiver Function Registers
	4.4 Configuration Pins
	Table 4�3. START Bit Definitions�
	4.4.1 8051 Timer/Counter Description
	Table 4�4. Internal 8051 Timers/Counters

	4.5 Internal 8051 Communication Interfaces
	Table 4�5. 8051 Communication Interfaces
	4.5.1 Master Bus Microprocessor Interface
	4.5.2 Host Port RAM Interface
	4.5.3 RS232 Serial Interface
	4.5.4 Group Talk Interface

	4.6 Program RAM Download
	4.6.1 Summary
	4.6.2 Download Description
	Figure 4�1. ZipWire2 PRAM Download Overview

	4.6.3 Dip Switch #2—DEVADR and BOOTOP Pins
	Table 4�6. Dip Switch #2 Definition
	Table 4�7. DEVADR Bit Definitions
	Table 4�8. BOOTOP Bit Definitions

	4.6.4 Download Protocol Overview
	4.6.5 Download Times
	4.6.5.1 Host Port RAM Interface
	4.6.5.2 Group Talk Interface

	4.6.6 Download and Device Validation
	4.6.7 Download Group Master Device
	4.6.8 Download Group Slave Device
	4.6.9 Download Single Processor Configuration
	Figure 4�2. Single Processor Configuration

	4.6.10 Download Dual Processor Configuration
	Figure 4�3. Host Processor Configuration
	4.6.10.1 Redundant Download Group Master
	4.6.10.2 Device Uniqueness
	4.6.10.3 Group Uniqueness

	4.6.11 Download API Commands
	4.6.11.1 Boot Code API Commands
	Table 4�9. Boot Code API Commands

	4.6.11.2 Operational API Commands
	Table 4�10. Operational API Commands

	4.6.11.3 Program RAM Checksum

	4.6.12 Download Examples

	5.0 ZipWire2 DSP Detailed Description
	5.1 ZipWire2 Clocks
	Figure 5�1. ZipWire2 Clocks
	Figure 5�2. Crystal Interface
	Table 5�1. ZipWire2 Clocks�

	6.0 ZipWire2 Framer Detailed Description
	6.1 Distinguishing Features
	6.2 Common Functions
	6.2.1 DATA FIFO

	6.3 HDSL Section
	6.3.1 General HDSL Functions
	6.3.1.1 CRC Generator
	Figure 6�1. Generic CRC Generator

	6.3.1.2 Scrambler/ Descrambler
	Figure 6�2. Generic Scrambler Generator

	6.3.1.3 Auxiliary Channel
	Figure 6�3. HDSL Auxiliary Channel Timing

	6.3.1.4 RX DSL Reference Phase Measurement

	6.3.2 HDSL Receiver Functionality
	Figure 6�4. HDSL Receive Section Block Diagram
	6.3.2.1 DSL Sync Detector (DSD)
	Figure 6�5. DSD Synchronization State Machine

	6.3.2.2 Tip/Ring Reversal Detection
	6.3.2.3 RX HDSL Payload Table

	6.3.3 HDSL Transmitter Functionality
	Figure 6�6. HDSL TX Section Block Diagram
	6.3.3.1 Stuffing Generator

	6.4 PCM Section
	6.4.1 PCM Interface
	6.4.2 General PCM Functions
	6.4.2.1 CRC Generator
	6.4.2.2 Insert/Drop
	Figure 6�7. Insert/Drop Timing Diagram

	6.4.2.3 Overhead Handling
	6.4.2.4 E1 Grooming
	6.4.2.5 MF Phase Measurement

	6.4.3 PCM Receiver
	Figure 6�8. PCM Receiver Block Diagram

	6.4.4 PCM Transmitter
	Figure 6�9. PCM Transmitter Block Diagram
	6.4.4.1 PCM Sync Detector

	6.5 Test and Diagnostics
	6.5.1 Performance Monitoring
	6.5.2 PRBS and BER Meter
	Figure 6�10. Generic PRBS Generator
	Figure 6�11. PRBS and BER Meter Timing

	7.0 Hardware Interfaces
	7.1 ZipWire2 Transceiver/Framer to AFE Interface
	Figure 7�1. ZipWire2 Transceiver/Framer to AFE Interface

	7.2 Transmission Line Interface
	Figure 7�2. DSL Transmission Line Interface
	7.2.1 Continuous Time Filter and Line Driver Control
	Figure 7�3. Continuous Time Filter and Line Driver Control

	7.2.2 Compromise Hybrid, Matching Resistors, and Transformer
	Figure 7�4. Hybrid Topology
	7.2.2.1 Compromise Hybrid
	7.2.2.2 Impedance Matching Resistors
	7.2.2.3 Transformer
	7.2.2.4 Anti-Alias Filters

	7.2.3 Surge Protection

	7.3 Voltage Reference and Compensation Circuitry
	Table 7�1. ZipWire2 AFE Compensation Capacitor Values
	Figure 7�5. ZipWire2 AFE Bias Current Network
	Table 7�2. ZipWire2 AFE Bias Current Network Values

	7.4 Framer Bypass Interface (ZipWire2 Transceiver DSL Interface)
	Figure 7�6. ZipWire2 Transceiver DSL Interface

	7.5 Test and Diagnostic Interface (JTAG)

	8.0 Pin Descriptions
	8.1 ZipWire2 Pin Assignments
	8.1.1 ZipWire2 Transceiver/Framer Pin Assignments
	Figure 8�1. ZipWire2 Transceiver/Framer Pin Assignments

	8.1.2 ZipWire2 Transceiver Pin Assignments
	Figure 8�2. ZipWire2 Transceiver Pin Assignments

	8.1.3 ZipWire2 Framer Pin Assignments
	Figure 8�3. ZipWire2 Framer Pin Assignments

	8.1.4 ZipWire2 AFE Pin Assignments
	Figure 8�4. ZipWire2 AFE Pin Diagram

	8.2 ZipWire2 Signal Descriptions
	8.2.1 ZipWire2 Transceiver/Framer Signal Descriptions
	Table 8�1. ZipWire2 Transceiver/Framer Signal Definitions (1 of 9)

	8.2.2 ZipWire2 AFE Signal Descriptions
	Table 8�2. ZipWire2 AFE Signal Descriptions (1 of 3)

	9.0 EVM Specific
	Figure 9�1. EVM Block Diagram
	Table 9�1. Generic Chip Select CS7 Memory Map�
	9.1 Bt8370 E1/T1 Framer
	9.2 EVM LEDs and Miscellaneous Output
	Table 9�2. DSL Status LED #1 Register—Write Only
	Table 9�3. T1/E1 Framer Output / LED #2 Register—Write Only

	9.3 EVM DIP Switches
	Table 9�4. DIP Switch 3 Bit Definitions
	Table 9�5. DIP Switch 4 Bit Definitions

	10.0 Software Overview
	Figure 10�1. Software Overview
	10.1 Software Features

	11.0 Embedded 8051 Software Features
	11.1 Activating the ZipWire2 Modem
	Table 11�1. Activation Phases
	11.1.1 Activation State Manager (ASM)
	Figure 11�1. Activation State Manager (ASM) Overview

	11.1.2 Pre-Activation
	11.1.2.1 OPTIS (HDSL2�1T1) Pre-Activation
	11.1.2.2 AutoBaud
	11.1.2.3 G.hs

	11.1.3 DSP Training
	11.1.4 DSL Line Coding
	11.1.5 Frame Format

	11.2 Loopbacks
	Figure 11�2. ZipWire2 Loopbacks
	Figure 11�3. Detailed AFE Loopbacks

	11.3 BER Meters
	11.3.1 DSL Framer Tx PCM BER Meter
	11.3.2 DSL Framer Rx PCM BER Meter
	11.3.3 Bit-Pump-Only BER Meter

	11.4 Performance Monitoring (Error History)
	Figure 11�4. CRC and FEBE Error Records at Three Time Intervals

	11.5 DSL Framer Interrupt Handler
	11.5.1 Sync Status
	11.5.2 Error Status Reporting
	11.5.3 Tx/Rx FIFO Error Handling
	11.5.4 DPLL Error Handling
	Figure 11�5. DPLL State Diagram

	11.5.5 Pair ID Termination (E1 Mode)
	11.5.6 Indicator Bit Termination

	11.6 Dynamic Master Loop
	11.7 Tip/Ring Reversal
	11.8 Loop Reversal
	Figure 11�6. Loop Reversal Definition

	11.9 Embedded Operation Channel (EOC) Operation
	11.9.1 Feature Overview
	11.9.2 Does Not Support
	11.9.3 EOC General Overview
	Table 11�2. EOC Message Types

	11.9.4 EOC Frame Format
	Table 11�3. Frame Format for HDSL2 EOC

	11.9.5 EOC Unit Addresses
	Table 11�4. EOC Device Address

	11.9.6 EOC Message IDs
	Table 11�5. Summary of EOC Request Message IDs (1 of 2)

	11.10 EOC Implementation Details
	11.10.1 EOC Transmit
	Figure 11�7. EOC Implementation Details—Transmit

	11.10.2 EOC Receive
	Figure 11�8. EOC Implementation Details—Receive

	11.10.3 EOC Transaction Time
	11.10.4 EOC Transaction Time-Out
	11.10.5 EOC Message Control
	11.10.5.1 Auto-Respons e To Request Message
	11.10.5.2 Auto-Trigger a Request Message
	11.10.5.3 Notify Host That a Message Was Received
	11.10.5.4 Notify Host When Error Is Detected

	11.10.6 EOC Transmit Queue
	Table 11�6. EOC TxQueue Status Bits

	11.10.7 EOC Receive Queue
	11.10.8 EOC Proprietary Messages
	11.10.8.1 User-Defined Message Request – Message ID 112
	Table 11�7. User-Defined Message Request Information Field

	11.10.8.2 User-Defined Message Response— Message ID 240
	Table 11�8. User-Defined Message Response Information Field

	11.10.8.3 API Over EOC Request—Message ID�113
	Table 11�9. API Over EOC Request Information Field�

	11.10.8.4 API Over EOC Response—Message ID 241
	Table 11�10. API Over EOC Response Information Field

	11.10.8.5 Redefining Proprietary Messages

	11.10.9 EOC Application State Machine
	Figure 11�9. EOC Application State Machine

	11.10.10 EOC API Commands
	Table 11�11. EOC API Commands Summary

	11.11 T1/E1 Framer and LIU Support

	12.0 Embedded 8051 Code
	Figure 12�1. Main Program Flow
	12.1 Boot Code State
	12.2 DSL Initialization State
	12.3 Out-Of-Service Check
	12.4 Configure ZipWire2 State
	12.5 Handle Test Mode States
	12.6 DSL Reset Check
	12.7 API Manager
	Table 12�1. API Manager Flag Description
	Figure 12�2. API Manager Flow

	12.8 Bit Pump Manager
	12.9 DSL Framer Manager
	12.10 DSL Loop Manager
	12.11 HDSL2 Activation State Manager
	Figure 12�3. HDSL2 HTU-C Activation State Diagram
	Figure 12�4. HDSL2 HTU-R Activation State Diagram

	12.12 HDSL1 Activation State Manager
	12.12.1 HTU-C Activation
	Figure 12�5. HDSL1 Activation State Machine at HTU-C

	12.12.2 HTU-R Activation
	Figure 12�6. HDSL1 Activation State Machine at HTU-R

	13.0 HDSL2 Standards Compliance
	13.1 Bit-Level Mapping
	13.1.1 Four-Level 2B1Q Mapping (HDSL1)
	Table 13�1. 2B1Q PAM4 Bit-to-Level Mapping

	13.1.2 Sixteen-Level Optis Mapping (HDSL2)
	Table 13�2. Optis PAM16 Bit-to-Level Mapping

	14.0 DSL Frame Structure
	14.1 Bypass DSL Frame Structure
	14.2 HDSL2 Configurations
	Table 14�1. HDSL2 Frame Structure and Overhead Bit Allocation�
	Figure 14�1. HDSL2 Frame Structure
	14.2.1 HDSL2 _1T1
	Figure 14�2. Payload Block Structure for 1T1 Application
	Table 14�2. 1T1 Framing

	14.2.2 HDSL2 _1E1
	Figure 14�3. Payload Block Structure for 1E1 Application
	Table 14�3. 1E1 Framing

	14.2.3 HDSL2—Single Pair

	14.3 HDSL1 Configurations
	Table 14�4. HDSL1 Frame Structure and Overhead Bit Allocation (1 of 2)
	Figure 14�4. HDSL1 Frame Structure
	14.3.1 HDSL1 _2T1
	Figure 14�5. Payload Block Structure for 2T1 Application
	Table 14�5. 2T1 Framing

	14.3.2 HDSL1_2E1
	Figure 14�6. Payload Block Structure for 2E1 Application
	Table 14�6. 2E1 Framing

	14.3.3 HDSL1_3E1
	Figure 14�7. Payload Block Structure for 3E1 Application
	Table 14�7. 3E1 Framing

	14.3.4 HDSL1_1T1
	Figure 14�8. Payload Block Structure for 1T1 Application
	Table 14�8. 1T1 Framing

	14.3.5 HDSL1_1E1
	Figure 14�9. Payload Block Structure for 1E1 Application
	Table 14�9. 1E1 Framing

	14.3.6 HDSL1_DSL_CUSTOM

	15.0 API: Microprocessor Communicator Channel Protocol
	Figure 15�1. Communication Channel Protocols
	15.1 API Message Time-Out
	15.2 API Master and Slave Implementation
	15.2.1 No Peer-to-Peer Protocol

	15.3 API Message Structure
	15.3.1 Incoming Message Structure
	Table 15�1. Incoming Messages from the Host Processor

	15.3.2 Outgoing Message Structure
	Table 15�2. Outgoing Messages from the 8051 Processor

	15.3.3 Header Section–Destination Field
	Table 15�3. Destination Field Specification
	15.3.3.1 Header Section–Opcode Field
	Table 15�4. API Opcode Type

	15.3.4 Header Section—Reserved Byte or ACK Status
	15.3.4.1 Acknowledge Status Byte
	Table 15�5. Acknowledge Status Codes (1 of 2)

	15.3.5 Header Section–Message Length Field
	15.3.6 Data Section–Data Parameter Field

	15.4 Host Port RAM Interface Protocol
	Table 15�6. Host Port RAM Mapping (1 of 2)
	15.4.1 INTR_HOST and INTR_8051 Registers
	15.4.2 Host Port Acknowledge Register
	Table 15�7. Acknowledge Status Register (Interrupt Source Register)

	15.4.3 Host Port Status Registers
	Table 15�8. Host Port RAM Status Mapping

	15.5 Host Port RAM Interface Sequence of Events
	Table 15�9. Host Port RAM Message Protocol Events (1 of 2)
	15.5.0.1 Host Processor Polling Method
	15.5.1 Multi Device System

	15.6 RS232 Serial Interface Protocol
	15.6.1 Host Processor to 8051 Processor Message Structure
	Table 15�10. Host Processor to 8051 Processor RS232 Message Structure

	15.6.2 RS232 Acknowledge Message Structure
	Table 15�11. RS232 Acknowledge Response Message Structure

	15.6.3 ZipWire2 8051 Processor to Host Processor Status Message Structure
	Table 15�12. 8051 Processor to Host Processor RS232 Message Structure

	15.6.4 RS232 Message Transfer Protocol
	Table 15�13. Example 1—Incoming RS232 Message
	Table 15�14. Example 1—Outgoing RS232 Message
	Table 15�15. Example 2—Incoming RS232 Message
	Table 15�16. Example 2—Outgoing RS232 Message
	Table 15�17. Example 3—Incoming RS232 Message
	Table 15�18. Example 3—Outgoing RS232 Message

	15.7 RS232 Checksum Function
	15.7.1 RS232 Multi-Device System
	15.7.2 Group Talk Serial Interface Protocol
	15.7.3 Boot RAM Software Download

	16.0 ZipWire2 API Configuration
	16.1 API Command Sequencing
	Figure 16�1. API Command Sequencing

	16.2 Indirect Configuration
	16.2.1 Scrambler/Descrambler Taps
	Table 16�1. Scrambler/Descrambler Taps

	16.2.2 CRC Tap
	Table 16�2. CRC Tap

	16.2.3 Sync Word
	Table 16�3. Sync Word—HDSL2
	Table 16�4. Sync Word—HDSL1

	16.2.4 Pair ID (Z-Bits)
	Table 16�5. Pair ID of the Z-bit Field

	16.3 Single Pair Configuration
	Table 16�6. Single Pair Configuration API Commands

	17.0 ZipWire2 API Commands
	17.1 API Commands: Quick Reference
	Table 17�1. API Command Summary (1 of 4)

	17.2 API Command Set Documentation Convention
	17.2.1 API Command Names

	17.3 Level 1 API Commands
	17.3.1 DSL System Enable
	17.3.2 DSL System Configuration
	17.3.3 DSL Activation
	Table 17�2. HDSL1 Variable Rate Startup Times

	17.3.4 Bit Pump Training Mode
	17.3.5 DSL Pre-Activation Mode
	17.3.6 DSL Startup Mode
	17.3.6.1 Bit Pump Auto Tip/Ring Reversal

	17.3.7 LOST Time (Tsilent) Period
	17.3.8 DSL Reset
	17.3.9 DSL Framer—PCM Configuration
	17.3.10 PCM Multi-Frame Length
	17.3.11 Single Pair Configuration
	17.3.12 DSL Data Rate
	17.3.13 DSL Status—Dynamic
	Table 17�3. STATUS_1: DSL Status Bit Definitions�
	Table 17�4. STATUS_3: Startup Failure Status Bit Definitions�
	Table 17�5. STATUS_4: DSL Framer Status Bit Definitions�
	Table 17�6. STATUS_8: Acknowledge Status (ISR) Bit Definitions�

	17.3.14 DSL Status—Static
	Table 17�7. Fatal Error Bit Definitions�
	Table 17�8. Tx State Bit Definitions

	17.3.15 Versions
	17.3.16 Line Attenuation
	17.3.17 Noise Margin
	17.3.18 EOC Send Command
	17.3.19 EOC Get Message Status
	17.3.20 EOC Set Database Data
	17.3.21 EOC Get Database Data
	17.3.22 EOC Set Message Control
	17.3.23 EOC Read Receive Queue
	17.3.24 EOC Set Proprietary Length
	17.3.25 Download Start (Length)
	17.3.26 Download Data
	17.3.27 Download End (Checksum)
	17.3.28 Download Slave

	17.4 Level 2 API Commands
	17.4.1 Read DSL Control Commands
	17.4.2 Stage Number
	17.4.3 Read Configuration Pins
	Table 17�9. DEVADR / BOOPOP Bit Definitions

	17.4.4 AFE Setting
	Table 17�10. AFE Bit Definitions

	17.4.5 Analog Front End (AFE) Configuration
	17.4.6 DSL Force Deactivate
	17.4.7 Transmit External Data
	17.4.8 Test Modes
	Table 17�11. Test Mode Options (1 of 2)

	17.4.9 Bit Pump Transmit Isolated Pulses Test Mode
	17.4.10 Bit Pump Transmit Fixed Pattern Test Mode
	17.4.11 Loopbacks
	Table 17�12. Loopback Options (1 of 2)

	17.4.12 Bit Pump BER Meter State
	17.4.13 Bit Pump BER Meter Results
	17.4.14 ERLE Test Mode
	17.4.15 ERLE Results
	17.4.16 Auxiliary CLK Select
	17.4.17 PCM Clock Configuration
	17.4.18 DSL Framer Transmit PCM BER Meter Results
	Table 17�13. DSL Framer BER Status Bits

	17.4.19 DSL Framer Receive PCM BER Meter Results
	17.4.20 Transmit PCM BER State
	17.4.21 Receive PCM BER State
	17.4.22 PRBS Configure
	Table 17�14. PRBS Data Pattern�

	17.4.23 Fill Pattern (CONST_FILL)
	17.4.24 Data Bank Contents
	17.4.25 Transmit PCM Mapper Value
	17.4.26 Transmit PCM Mapper Write
	17.4.27 Receive PCM Mapper Value
	17.4.28 Receive PCM Mapper Write
	17.4.29 Transmit HDSL Mapper Value
	17.4.30 Transmit HDSL Mapper Write
	17.4.31 Receive HDSL Mapper Value
	17.4.31.1 Number of Time Slots

	17.4.32 Receive HDSL Mapper Write
	17.4.33 Clear ZipWire2 Error Counters
	Table 17�15. Clear Error Counter Options

	17.4.34 Read ZipWire2 Operational Error Counters
	17.4.35 Read ZipWire2 HDSL Performance Error Counters
	17.4.36 Read ZipWire2 PCM Performance Error Counters
	17.4.37 Read ZipWire2 System Performance Error Counters
	17.4.38 Available Seconds and Total Seconds
	17.4.39 Inject DSL CRC Error
	Table 17�16. Inject CRC Error Options

	17.4.40 Set CRC/FEBE Error History State
	17.4.41 Query CRC/FEBE History Interval In-Progress
	17.4.42 CRC Error History at Interval 1
	17.4.43 CRC Error History at Interval 2
	17.4.44 CRC Error History at Interval 3
	17.4.45 FEBE Error History at Interval 1
	17.4.46 FEBE Error History at Interval 2
	17.4.47 FEBE Error History at Interval 3

	17.5 Level 3 API Commands
	17.5.1 Signal Level Meter
	17.5.2 Timing Recovery Offset
	17.5.3 Bit Pump Reverse Tip/Ring
	17.5.4 Scrambler/Descrambler Configuration
	17.5.5 Write AFE Transmit Gain
	17.5.6 Read AFE Transmit Gain
	17.5.7 DSL Framer Transmit Path Reset
	17.5.8 DSL Framer Receive Path Reset
	17.5.9 DSL Framer—HDSL Configuration
	17.5.10 Mask Host Port Interrupt (INTR_HOST)
	17.5.11 DSL Framer Auto Water Level
	17.5.12 DSL Framer Transmit Water Level
	17.5.13 DSL Framer Receive Water Level
	17.5.14 DSL Framer DPLL Clock Generator

	17.6 Read/Write Register Commands
	17.6.1 Write Register
	17.6.2 Read Register
	17.6.3 Write AFE Register
	17.6.4 Read AFE Register

	17.7 T1/E1 Framer Commands
	17.7.1 T1/E1 Framer Configure
	17.7.2 T1/E1 Framer Frame Format
	17.7.3 T1/E1 Framer Transmit AIS
	17.7.4 T1/E1 Framer Output Mode
	17.7.5 T1/E1 Framer Receive Termination
	17.7.6 T1/E1 Framer Loopbacks
	Table 17�17. T1/E1 Framer Loopback Options

	17.7.7 T1/E1 Read Framer Control Commands
	17.7.8 T1/E1 Framer Versions
	Table 17�18. Framer Silicon Types

	17.8 EVM Specific Commands
	17.8.1 EVM Set LED Bank
	17.8.2 EVM Set Miscellaneous Output
	17.8.3 EVM LED Update State
	17.8.4 EVM LED and DIP Switch Status

	18.0 Electrical and Mechanical Specifications
	18.1 Specifications for the ZipWire2 Transceiver/Framer and ZipWire2 AFE
	18.1.1 Recommended Operating Conditions
	Table 18�1. Recommended Operating Conditions

	18.1.2 Absolute Maximum Ratings
	Table 18�2. Absolute Maximum Ratings

	18.2 Thermal Characteristics
	18.2.1 ZipWire2 AFE
	18.2.2 ZipWire2 Transceiver
	18.2.3 ZipWire2 Framer
	18.2.4 ZipWire2 Transceiver/Framer

	18.3 Specifications for ZipWire2 Transceiver/Framer Only
	18.3.1 Power Dissipation
	Table 18�3. ZipWire2 Transceiver/Framer Power Dissipation

	18.3.2 DC Characteristics
	Table 18�4. Transceiver/Framer DC Characteristics�

	18.3.3 Host Port RAM Interface Timing
	Figure 18�1. Host Port Interface Timing Diagrams
	Table 18�5. Host Port Ram Interface Timing Table�

	18.3.4 Master Bus Interface Timing
	18.3.5 DSL Framer Timing Requirements
	18.3.6 DSL Framer Switching Characteristics

	18.4 Specifications for ZipWire2 AFE Only
	18.4.1 Power Dissipation
	Table 18�6. ZipWire2 AFE Power Dissipation

	18.4.2 DC Characteristics
	Table 18�7. AFE DC Characteristics

	18.4.3 PSD Specifications
	18.4.3.1
	Figure 18�2. Transmit Pulse Template for Two- and Three-Pair Systems; Normalized Pulse Mask (Sour...
	Table 18�8. Transmit Pulse Template for Two- and Three-Pair Systems (Source ETSI TS 101 135, Form...
	Figure 18�3. Transmit Pulse Template for One-Pair Systems (Source ETSI TS 101 135, Formerly ETR 152)
	Table 18�9. Transmit Pulse Template for One-Pair Systems (Source ETSI TS 101 135, Formerly ETR 152)

	18.4.3.2
	18.4.3.3

	18.4.4 Pulse Template Specifications
	Figure 18�4. Upper Bound of the Average PSD of a 392 kbaud System (Source ETSI TS 101 135, Former...
	Figure 18�5. Upper Bound of the Average PSD of a 584 kbaud System (Source ETSI TS 101 135, Former...
	Figure 18�6. Upper Bound of the Average PSD of a 1,160 kbaud System (Source ETSI TS 101 135, Form...

	18.5 Mechanical Specifications
	Figure 18�7. Package Outline, 27 x 27 mm, Two-Layer Chip, 314-Pin Ball Grid Array (BGA)
	Figure 18�8. Package Outline, 15 x 15 mm, Two-Layer Chip, 208-Pin CABGA
	Figure 18�9. Package Outline, 9 x 9 mm Two-Layer Chip, 81-Pin CABGA
	Figure 18�10. Package Outline for the 80-Pin Thin Quad Flat Pack (TQFP)

	Appendix A : Acronyms and Abbreviations
	Sales Offices

