view src/cs/drivers/drv_app/ffs/board/cfgffs.c @ 303:f76436d19a7a default tip

!GPRS config: fix long-standing AT+COPS chance hanging bug There has been a long-standing bug in FreeCalypso going back years: sometimes in the AT command bring-up sequence of an ACI-only MS, the AT+COPS command would produce only a power scan followed by cessation of protocol stack activity (only L1 ADC traces), instead of the expected network search sequence. This behaviour was seen in different FC firmware versions going back to Citrine, and seemed to follow some law of chance, not reliably repeatable. This bug has been tracked down and found to be specific to !GPRS configuration, stemming from our TCS2/TCS3 hybrid and reconstruction of !GPRS support that was bitrotten in TCS3.2/LoCosto version. ACI module psa_mms.c, needed only for !GPRS, was missing in the TCS3 version and had to be pulled from TCS2 - but as it turns out, there is a new field in the MMR_REG_REQ primitive that needs to be set correctly, and that psa_mms.c module is the place where this initialization needed to be added.
author Mychaela Falconia <falcon@freecalypso.org>
date Thu, 08 Jun 2023 08:23:37 +0000
parents 4e78acac3d88
children
line wrap: on
line source

/******************************************************************************
 * Flash File System (ffs)
 * Idea, design and coding by Mads Meisner-Jensen, mmj@ti.com
 *
 * FFS configuration
 *
 * $Id: cfgffs.c 1.27 Fri, 19 Dec 2003 12:00:13 +0100 tsj $
 *
 ******************************************************************************/

#ifndef TARGET
#include "ffs.cfg"
#endif

#include "ffs/ffs.h"
#include "ffs/board/drv.h"

#include "config/board.cfg"

#if (BOARD == 34)
  #include "ffs/board/ffspcm.h"
#endif

#include "config/rf.cfg"

#include <string.h>

/******************************************************************************
 * Flash Device Configuration
 ******************************************************************************/

#if (TARGET == 1)

// The absolutely easiest way to disable FFS altogether is to set
// ffs_flash_manufact = 0x99 and ffs_flash_device = 0x9999. Because this is
// (as of today at least) an undefined device, FFS will NOT initialize and
// every FFS function call will fail (with no side-effects).

// FFS will automatically detect the flash device if both ffs_flash_manufact
// and ffs_flash_device are zero. Note that this works *only* if the flash
// device is mapped at address zero. Otherwise you *have* to supply
// manufacturer and device IDs.

// FFS can be configured to run in ram only. In this case the
// 'ffs_flash_manufact' must be set to MANUFACT_RAM and an address to a
// static user allocated ram buffer must be applied to the variable
// 'ffs_flash_address'. In a ram configuration the 'ffs_flash_device' is an
// arbitrary value that must be in sync with the 'device code' value chosen
// in dev.c.

#if (BOARD == 34)
uint16 ffs_flash_manufact = MANUFACT_RAM;
uint16 ffs_flash_device   = 0x0404; // RAM

int ffs_ram_image_address = FFS_BASE_ADDRESS;

#else

uint16 ffs_flash_manufact = 0x00; // autodetect device
//uint16 ffs_flash_manufact = MANUFACT_RAM;
//uint16 ffs_flash_manufact = 0x04; // Fujitsu
//uint16 ffs_flash_manufact = 0xBF; // SST

uint16 ffs_flash_device   = 0x0000; // autodetect device
//uint16 ffs_flash_device     = 0x0404; // RAM
//uint16 ffs_flash_device   = 0xB496; // Fujitsu stacked device
//uint16 ffs_flash_device   = 0x2761; // SST device 1601
//uint16 ffs_flash_device   = 0x2259; // 8x8kB blocks

int ffs_ram_image_address = 0;  // Dummy

//unsigned char ffs_image[8*8*1024];
//int ffs_ram_image_address = (int) &ffs_image;

#endif // BOARD == 34

#else

uint16 ffs_flash_manufact = 'T';
//uint16 ffs_flash_device   = 0x0F12; // Test device: 128x64kB blocks
uint16 ffs_flash_device   = 0x0F10; // Test device: 16x64kB blocks
//uint16 ffs_flash_device   = 0x080D; // Test device: 8x8kB blocks
//uint16 ffs_flash_device   = 0x0404; // Test device: 4x4kB blocks

int ffs_ram_image_address = 0;  // Dummy
#endif


/******************************************************************************
 * ffs_is_modify_valid()
 ******************************************************************************/

// This is function to be implemented by the application programmer. It is
// called by ffs when a read-only object is about to be modified or
// removed. It should return zero if the operation should be
// disallowed. Returning non-zero means go ahead.
effs_t ffs_is_modifiable(const char *name)
{
    // default is to allow any modification of read-only objects.

    // example of how to disallow modifying a specific object...
    if (strcmp("IMEI", &name[strlen(name) - 4]) == 0)
        return 0;

    return 1;
}