comparison L1/cust0/mv100/l1_cust.c @ 0:75a11d740a02

initial import of gsm-fw from freecalypso-sw rev 1033:5ab737ac3ad7
author Mychaela Falconia <falcon@freecalypso.org>
date Thu, 09 Jun 2016 00:02:41 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:75a11d740a02
1 /************* Revision Controle System Header *************
2 * GSM Layer 1 software
3 * L1_CUST.C
4 *
5 * Filename l1_cust.c
6 * Version 3.66
7 * Date 03/21/03
8 *
9 ************* Revision Controle System Header *************/
10
11 //#define GLOBAL
12
13
14 #include "string.h"
15
16 #include "l1_confg.h"
17 #include "l1_const.h"
18 #include "ulpd.h"
19 #include "tm_defs.h"
20 #include "l1_types.h"
21 #include "l1_time.h"
22 #include "l1_trace.h"
23 #include "sys_types.h"
24 #include "sim.h"
25 #include "buzzer.h"
26 #include "serialswitch.h"
27
28 #if TESTMODE
29 #include "l1tm_defty.h"
30 #endif
31
32 #if (AUDIO_TASK == 1)
33 #include "l1audio_const.h"
34 #include "l1audio_cust.h"
35 #include "l1audio_defty.h"
36 #endif
37
38 #if (L1_GTT == 1)
39 #include "l1gtt_const.h"
40 #include "l1gtt_defty.h"
41 #endif
42 #include "l1_defty.h"
43 #include "l1_msgty.h"
44 #include "l1_tabs.h"
45 #include "l1_varex.h"
46
47 #if (VCXO_ALGO == 1)
48 #include "l1_ctl.h"
49 #endif
50
51 #if ((ANALOG == 1) || (ANALOG == 2) || (ANALOG == 3))
52 #include "spi_drv.h"
53 #endif
54
55 #if (RF==35)
56 #include "tpudrv35.h"
57 #include "l1_rf35.h"
58 #include "l1_rf35.c"
59 #endif
60
61 #if (RF==12)
62 #include "tpudrv12.h"
63 #include "l1_rf12.h"
64 #include "l1_rf12.c"
65 #endif
66
67 #if (RF==10)
68 #include "tpudrv10.h"
69 #include "l1_rf10.h"
70 #include "l1_rf10.c"
71 #endif
72
73 #if (RF==8)
74 #include "tpudrv8.h"
75 #include "l1_rf8.h"
76 #include "l1_rf8.c"
77 #endif
78
79 #if (RF==2)
80 #include "l1_rf2.h"
81 #include "l1_rf2.c"
82 #endif
83
84 // Nucleus functions
85 extern INT TMD_Timer_State;
86 extern UWORD32 TMD_Timer; // for big sleep
87 extern UWORD32 TCD_Priority_Groups;
88 extern VOID *TCD_Current_Thread;
89 extern TC_HCB *TCD_Active_HISR_Heads[TC_HISR_PRIORITIES];
90 extern TC_HCB *TCD_Active_HISR_Tails[TC_HISR_PRIORITIES];
91 extern TC_PROTECT TCD_System_Protect;
92
93 #if (L2_L3_SIMUL == 0)
94 #define FFS_WORKAROUND 1
95 #else
96 #define FFS_WORKAROUND 0
97 #endif
98 #if (FFS_WORKAROUND == 1)
99 #include "ffs.h"
100 #else
101 typedef signed int int32;
102 typedef signed char effs_t;
103 typedef int32 filesize_t;
104 effs_t ffs_fwrite(const char *name, void *addr, filesize_t size);
105 effs_t ffs_fread(const char *name, void *addr, filesize_t size);
106 #endif
107
108 // Import band configuration from Flash module (need to replace by an access function)
109 //extern UWORD8 std;
110 extern T_L1_CONFIG l1_config;
111 extern T_L1S_GLOBAL l1s;
112
113 #if (CODE_VERSION != SIMULATION)
114 // Import serial switch configuration
115 extern char ser_cfg_info[2];
116 #endif
117
118 void get_cal_from_nvmem (UWORD8 *ptr, UWORD16 len, UWORD8 id);
119 UWORD8 save_cal_in_nvmem (UWORD8 *ptr, UWORD16 len, UWORD8 id);
120 void config_rf_rw_band(char type, UWORD8 read);
121 void config_rf_read(char type);
122 void config_rf_write(char type);
123
124 //TISH20040421 Sean modified for watchdog implemention
125 BOOL watchdog_applied(void)
126 {
127 return TRUE;
128 }
129 //Sean modified end
130
131 enum {
132 RF_ID = 0,
133 ADC_ID = 1
134 };
135
136 /*-------------------------------------------------------*/
137 /* Parameters: none */
138 /* Return: none */
139 /* Functionality: Defines the location of rf-struct */
140 /* for each std. */
141 /*-------------------------------------------------------*/
142
143 const static T_BAND_CONFIG band_config[] =
144 { /*ffs name, default addr, max carrier, min tx pwr */
145 {"",(T_RF_BAND *) 0,0,0},//undefined
146 {"900", (T_RF_BAND *)&rf_900, 174, 19 },//EGSM
147 {"1800",(T_RF_BAND *)&rf_1800, 374, 15 },//DCS
148 {"1900",(T_RF_BAND *)&rf_1900, 299, 15 },//PCS
149 {"850", (T_RF_BAND *)&rf_850, 124, 19 },//GSM850
150 #if (RF == 10)
151 {"1900_us",(T_RF_BAND *)&rf_1900, 299, 15 },//usdual 1900 rf tables are the same as 3band 1900 rf tables at the moment
152 #endif
153 {"900", (T_RF_BAND *)&rf_900, 124, 19 } //GSM, this should be last entry
154 };
155
156 /*-------------------------------------------------------*/
157 /* Parameters: none */
158 /* Return: none */
159 /* Functionality: Defines the indices into band_config */
160 /* for each std. */
161 /*-------------------------------------------------------*/
162 const T_STD_CONFIG std_config[] =
163 {
164 /* band1 index, band2 index, txpwr turning point, first arfcn*/
165 { 0, 0, 0, 0 }, // std = 0 not used
166 { BAND_GSM900, BAND_NONE, 0, 1 }, // std = 1 GSM
167 { BAND_EGSM900, BAND_NONE, 0, 1 }, // std = 2 EGSM
168 { BAND_PCS1900, BAND_NONE, 21, 512 }, // std = 3 PCS
169 { BAND_DCS1800, BAND_NONE, 28, 512 }, // std = 4 DCS
170 { BAND_GSM900, BAND_DCS1800, 28, 1 }, // std = 5 DUAL
171 { BAND_EGSM900, BAND_DCS1800, 28, 1 }, // std = 6 DUALEXT
172 { BAND_GSM850, BAND_NONE, 0, 128 }, // std = 7 850
173 #if (RF == 10)
174 { BAND_GSM850, BAND_PCS1900_US, 21, 1 } // std = 8 850/1900
175 #else
176 { BAND_GSM850, BAND_PCS1900, 21, 1 } // std = 8 850/1900
177 #endif
178 };
179
180 /*-------------------------------------------------------*/
181 /* Prototypes of external functions used in this file. */
182 /*-------------------------------------------------------*/
183 void l1_initialize(T_MMI_L1_CONFIG *mmi_l1_config);
184 WORD16 Convert_l1_radio_freq (UWORD16 radio_freq);
185
186 /*-------------------------------------------------------*/
187 /* Cust_recover_Os() */
188 /*-------------------------------------------------------*/
189 /* */
190 /* Description: adjust OS from sleep duration */
191 /* ------------ */
192 /* This function fix the : */
193 /* - system clock */
194 /* - Nucleus timers */
195 /* - xxxxxx (customer dependant) */
196 /*-------------------------------------------------------*/
197
198 UWORD8 Cust_recover_Os(void)
199 {
200 #if (CODE_VERSION != SIMULATION)
201 if (l1_config.pwr_mngt == PWR_MNGT)
202 {
203 UWORD32 current_system_clock;
204
205 /***************************************************/
206 // Fix System clock and Nucleus Timers if any.... */
207 /***************************************************/
208 // Fix System clock ....
209 current_system_clock = NU_Retrieve_Clock();
210 current_system_clock += l1s.pw_mgr.sleep_duration;
211 NU_Set_Clock(current_system_clock);
212
213 // Fix Nucleus timer (if needed) ....
214 if (TMD_Timer_State == TM_ACTIVE)
215 {
216 TMD_Timer -= l1s.pw_mgr.sleep_duration;
217 if (!TMD_Timer) TMD_Timer_State = TM_EXPIRED;
218 }
219
220 /***************************************************/
221 // Cust dependant part ... */
222 /***************************************************/
223 //.............
224 //.............
225 //..............
226 return(TRUE);
227
228 }
229 #endif
230 }
231
232
233
234 /*-------------------------------------------------------*/
235 /* Cust_check_system() */
236 /*-------------------------------------------------------*/
237 /* */
238 /* Description: */
239 /* ------------ */
240 /* GSM 1.5 : */
241 /* - authorize UWIRE clock to be stopped */
242 /* and write value in l1s.pw_mgr.modules_status. */
243 /* - authorize ARMIO clock to be stopped if the light is */
244 /* off and write value in l1s.pw_mgr.modules_status. */
245 /* - check if SIM clock have been stopped */
246 /* before allowing DEEP SLEEP. */
247 /* - check if UARTs are ready to enter deep sleep */
248 /* - choose the sleep mode */
249 /* */
250 /* Return: */
251 /* ------- */
252 /* DO_NOT_SLEEP, FRAME_STOP or CLOCK_STOP */
253 /*-------------------------------------------------------*/
254 UWORD8 Cust_check_system(void)
255 {
256 extern UWORD8 why_big_sleep;
257 #if (CODE_VERSION != SIMULATION)
258 if (l1_config.pwr_mngt == PWR_MNGT)
259 {
260
261 #if (L2_L3_SIMUL == 0)
262 // Forbid deep sleep if the light is on
263 if(LT_Status())
264 {
265 //cut ARMIO and UWIRE clocks in big sleep
266 l1s.pw_mgr.modules_status = ARMIO_CLK_CUT | UWIRE_CLK_CUT ;
267 why_big_sleep = BIG_SLEEP_DUE_TO_LIGHT_ON;
268 return(FRAME_STOP); // BIG sleep
269 }
270
271 // Forbid deep sleep if the SIM and UARTs not ready
272 if(SIM_SleepStatus())
273 {
274 #endif
275 if(SER_UartSleepStatus())
276 {
277 return(CLOCK_STOP); // DEEP sleep
278 }
279 else why_big_sleep = BIG_SLEEP_DUE_TO_UART;
280 #if (L2_L3_SIMUL == 0)
281 }
282 else why_big_sleep = BIG_SLEEP_DUE_TO_SIM;
283 #endif
284 // cut ARMIO and UWIRE clocks in big sleep
285 l1s.pw_mgr.modules_status = ARMIO_CLK_CUT | UWIRE_CLK_CUT ;
286 return(FRAME_STOP); // BIG sleep
287 }
288 #else // Simulation part
289 return(CLOCK_STOP); // DEEP sleep
290 #endif
291 }
292
293
294 /*-------------------------------------------------------*/
295 /* Parameters: none */
296 /* Return: none */
297 /* Functionality: Read the RF configuration, tables etc. */
298 /* from FFS files. */
299 /*-------------------------------------------------------*/
300 const static T_CONFIG_FILE config_files_common[] =
301 {
302 #if (CODE_VERSION != SIMULATION)
303
304 // The first char is NOT part of the filename. It is used for
305 // categorizing the ffs file contents:
306 // f=rf-cal, F=rf-config,
307 // t=tx-cal, T=tx-config,
308 // r=rx-cal, R=rx-config,
309 // s=sys-cal, S=sys-config,
310 "f/gsm/rf/afcdac", &rf.afc.eeprom_afc, sizeof(rf.afc.eeprom_afc),
311 "F/gsm/rf/stdmap", &rf.radio_band_support, sizeof(rf.radio_band_support),
312 #if (VCXO_ALGO == 1)
313 "F/gsm/rf/afcparams", &rf.afc.psi_sta_inv, 4 * sizeof(UWORD32) + 4 * sizeof(WORD16),
314 #else
315 "F/gsm/rf/afcparams", &rf.afc.psi_sta_inv, 4 * sizeof(UWORD32),
316 #endif
317
318 "R/gsm/rf/rx/agcglobals", &rf.rx.agc, 5 * sizeof(UWORD16),
319 "R/gsm/rf/rx/il2agc", &rf.rx.agc.il2agc_pwr[0], 3 * sizeof(rf.rx.agc.il2agc_pwr),
320 "R/gsm/rf/rx/agcwords", &AGC_TABLE, sizeof(AGC_TABLE),
321
322 "s/sys/adccal", &adc_cal, sizeof(adc_cal),
323
324 "S/sys/abb", &abb, sizeof(abb),
325 "S/sys/uartswitch", &ser_cfg_info, sizeof(ser_cfg_info),
326
327 #endif
328 NULL, 0, 0 // terminator
329 };
330
331 /*-------------------------------------------------------*/
332 /* Parameters: none */
333 /* Return: none */
334 /* Functionality: Read the RF configurations for */
335 /* each band from FFS files. These files */
336 /* are defined for one band, and and used */
337 /* for all bands. */
338 /*-------------------------------------------------------*/
339 const static T_CONFIG_FILE config_files_band[] =
340 {
341 // The first char is NOT part of the filename. It is used for
342 // categorizing the ffs file contents:
343 // f=rf-cal, F=rf-config,
344 // t=tx-cal, T=tx-config,
345 // r=rx-cal, R=rx-config,
346 // s=sys-cal, S=sys-config,
347
348 // generic for all bands
349 // band[0] is used as template for all bands.
350 "t/gsm/rf/tx/ramps", &rf_band[0].tx.ramp_tables, sizeof(rf_band[0].tx.ramp_tables),
351 "t/gsm/rf/tx/levels", &rf_band[0].tx.levels, sizeof(rf_band[0].tx.levels),
352 "t/gsm/rf/tx/calchan", &rf_band[0].tx.chan_cal_table, sizeof(rf_band[0].tx.chan_cal_table),
353 "T/gsm/rf/tx/caltemp", &rf_band[0].tx.temp, sizeof(rf_band[0].tx.temp),
354
355 "r/gsm/rf/rx/calchan", &rf_band[0].rx.agc_bands, sizeof(rf_band[0].rx.agc_bands),
356 "R/gsm/rf/rx/caltemp", &rf_band[0].rx.temp, sizeof(rf_band[0].rx.temp),
357 "r/gsm/rf/rx/agcparams", &rf_band[0].rx.rx_cal_params, sizeof(rf_band[0].rx.rx_cal_params),
358 NULL, 0, 0 // terminator
359 };
360
361 void config_ffs_read(char type)
362 {
363 config_rf_read(type);
364 config_rf_rw_band(type, 1);
365 }
366
367 void config_ffs_write(char type)
368 {
369 config_rf_write(type);
370 config_rf_rw_band(type, 0);
371 }
372
373 void config_rf_read(char type)
374 {
375 const T_CONFIG_FILE *file = config_files_common;
376
377 while (file->name != NULL)
378 {
379 if (type == '*' || type == file->name[0]) {
380 ffs_fread(&file->name[1], file->addr, file->size);
381 }
382 file++;
383 }
384 }
385
386 void config_rf_write(char type)
387 {
388 const T_CONFIG_FILE *file = config_files_common;
389
390 while (file->name != NULL)
391 {
392 if (type == '*' || type == file->name[0]) {
393 ffs_fwrite(&file->name[1], file->addr, file->size);
394 }
395 file++;
396 }
397 }
398
399 void config_rf_rw_band(char type, UWORD8 read)
400 {
401 const T_CONFIG_FILE *f1 = config_files_band;
402 UWORD8 i;
403 WORD32 offset;
404 char name[64];
405 char *p;
406 UWORD8 std = l1_config.std.id;
407
408 #if FFS_WORKAROUND == 1
409 struct stat_s stat;
410 UWORD16 time;
411 #endif
412 for (i=0; i< GSM_BANDS; i++)
413 {
414 if(std_config[std].band[i] !=0 )
415 {
416 f1 = &config_files_band[0];
417 while (f1->name != NULL)
418 {
419 offset = (WORD32) f1->addr - (WORD32) &rf_band[0]; //offset in bytes
420 p = ((char *) &rf_band[i]) + offset;
421 if (type == '*' || type == f1->name[0])
422 {
423 strcpy(name, &f1->name[1]);
424 strcat(name, ".");
425 strcat(name, band_config[std_config[std].band[i]].name);
426
427 if (read == 1)
428 ffs_fread(name, p, f1->size);
429 else //write == 0
430 {
431 ffs_fwrite(name, p, f1->size);
432
433 // wait until ffs write has finished
434 #if FFS_WORKAROUND == 1
435 stat.inode = 0;
436 time = 0;
437
438 do {
439 rvf_delay(10); // in milliseconds
440 time += 10;
441 ffs_stat(name, &stat);
442 } while (stat.inode == 0 && time < 500);
443 #endif
444 }
445 }
446 f1++;
447 }
448 }
449 }
450 }
451
452 /*-------------------------------------------------------*/
453 /* Cust_init_std() */
454 /*-------------------------------------------------------*/
455 /* Parameters : */
456 /* Return : */
457 /* Functionality : Init Standard variable configuration */
458 /*-------------------------------------------------------*/
459 void Cust_init_std(void)
460 {
461 UWORD8 std = l1_config.std.id;
462 UWORD8 band1, band2;
463 T_RF_BAND *pt1, *pt2;
464
465 band1 = std_config[std].band[0];
466 band2 = std_config[std].band[1];
467
468 //get these from std
469 pt1 = band_config[band1].addr;
470 pt2 = band_config[band2].addr;
471
472 // copy rf-struct from default flash to ram
473 memcpy(&rf_band[0], pt1, sizeof(T_RF_BAND));
474
475 if(std_config[std].band[1] != BAND_NONE )
476 memcpy(&rf_band[1], pt2, sizeof(T_RF_BAND));
477
478 // Read all RF and system configuration from FFS *before* we copy any of
479 // the rf structure variables to other places, like L1.
480
481 config_ffs_read('*');
482
483 l1_config.std.first_radio_freq = std_config[std].first_arfcn;
484
485 if(band2!=0)
486 l1_config.std.first_radio_freq_band2 = band_config[band1].max_carrier + 1;
487 else
488 l1_config.std.first_radio_freq_band2 = 0; //band1 carrier + 1 else 0
489
490 // if band2 is not used it is initialised with zeros
491 l1_config.std.nbmax_carrier = band_config[band1].max_carrier;
492 if(band2!=0)
493 l1_config.std.nbmax_carrier += band_config[band2].max_carrier;
494
495 l1_config.std.max_txpwr_band1 = band_config[band1].max_txpwr;
496 l1_config.std.max_txpwr_band2 = band_config[band2].max_txpwr;
497 l1_config.std.txpwr_turning_point = std_config[std].txpwr_tp;
498 l1_config.std.cal_freq1_band1 = 0;
499 l1_config.std.cal_freq1_band2 = 0;
500
501 l1_config.std.g_magic_band1 = rf_band[MULTI_BAND1].rx.rx_cal_params.g_magic;
502 l1_config.std.lna_att_band1 = rf_band[MULTI_BAND1].rx.rx_cal_params.lna_att;
503 l1_config.std.lna_switch_thr_low_band1 = rf_band[MULTI_BAND1].rx.rx_cal_params.lna_switch_thr_low;
504 l1_config.std.lna_switch_thr_high_band1 = rf_band[MULTI_BAND1].rx.rx_cal_params.lna_switch_thr_high;
505 l1_config.std.swap_iq_band1 = rf_band[MULTI_BAND1].swap_iq;
506
507 l1_config.std.g_magic_band2 = rf_band[MULTI_BAND2].rx.rx_cal_params.g_magic;
508 l1_config.std.lna_att_band2 = rf_band[MULTI_BAND2].rx.rx_cal_params.lna_att;
509 l1_config.std.lna_switch_thr_low_band2 = rf_band[MULTI_BAND2].rx.rx_cal_params.lna_switch_thr_low;
510 l1_config.std.lna_switch_thr_high_band2 = rf_band[MULTI_BAND2].rx.rx_cal_params.lna_switch_thr_high;
511 l1_config.std.swap_iq_band2 = rf_band[MULTI_BAND2].swap_iq;
512
513 l1_config.std.radio_freq_index_offset = l1_config.std.first_radio_freq-1;
514
515 // init variable indicating which radio bands are supported by the chosen RF
516 l1_config.std.radio_band_support = rf.radio_band_support;
517 }
518
519
520 /*-------------------------------------------------------*/
521 /* Cust_init_params() */
522 /*-------------------------------------------------------*/
523 /* Parameters : */
524 /* Return : */
525 /* Functionality : Init RF dependent paramters (AGC, TX) */
526 /*-------------------------------------------------------*/
527 void Cust_init_params(void)
528 {
529
530 #if (CODE_VERSION==SIMULATION)
531 extern UWORD16 simu_RX_SYNTH_SETUP_TIME; // set in xxx.txt l3 scenario file
532 extern UWORD16 simu_TX_SYNTH_SETUP_TIME; // set in xxx.txt l3 scenario file
533
534 l1_config.params.rx_synth_setup_time = simu_RX_SYNTH_SETUP_TIME;
535 l1_config.params.tx_synth_setup_time = simu_TX_SYNTH_SETUP_TIME;
536 #else
537 l1_config.params.rx_synth_setup_time = RX_SYNTH_SETUP_TIME;
538 l1_config.params.tx_synth_setup_time = TX_SYNTH_SETUP_TIME;
539 #endif
540
541
542 // Convert SYNTH_SETUP_TIME into SPLIT.
543 // We have kept a margin of 20qbit (EPSILON_MEAS) to cover offset change and Scenario closing time + margin.
544 l1_config.params.rx_synth_load_split = 1L + (l1_config.params.rx_synth_setup_time + EPSILON_MEAS) / (BP_DURATION/BP_SPLIT);
545 l1_config.params.tx_synth_load_split = 1L + (l1_config.params.tx_synth_setup_time + EPSILON_MEAS) / (BP_DURATION/BP_SPLIT);
546
547 l1_config.params.rx_synth_start_time = TPU_CLOCK_RANGE + PROVISION_TIME - l1_config.params.rx_synth_setup_time;
548 l1_config.params.tx_synth_start_time = TPU_CLOCK_RANGE - l1_config.params.tx_synth_setup_time;
549
550 l1_config.params.rx_change_synchro_time = l1_config.params.rx_synth_start_time - EPSILON_SYNC;
551 l1_config.params.rx_change_offset_time = l1_config.params.rx_synth_start_time - EPSILON_OFFS;
552
553 l1_config.params.tx_change_offset_time = TIME_OFFSET_TX -
554 TA_MAX -
555 l1_config.params.tx_synth_setup_time -
556 EPSILON_OFFS;
557
558 // TX duration = ramp up time + burst duration (data + tail bits)
559 l1_config.params.tx_nb_duration = UL_ABB_DELAY + rf.tx.guard_bits*4 + NB_BURST_DURATION_UL;
560 l1_config.params.tx_ra_duration = UL_ABB_DELAY + rf.tx.guard_bits*4 + RA_BURST_DURATION;
561
562 l1_config.params.tx_nb_load_split = 1L + (l1_config.params.tx_nb_duration - rf.tx.prg_tx - NB_MARGIN) / (BP_DURATION/BP_SPLIT);
563 l1_config.params.tx_ra_load_split = 1L + (l1_config.params.tx_ra_duration - rf.tx.prg_tx - NB_MARGIN) / (BP_DURATION/BP_SPLIT);
564
565 // time for the end of RX and TX TPU scenarios
566 l1_config.params.rx_tpu_scenario_ending = RX_TPU_SCENARIO_ENDING;
567 l1_config.params.tx_tpu_scenario_ending = TX_TPU_SCENARIO_ENDING;
568
569 // FB26 anchoring time is computed backward to leave only 6 qbit margin between
570 // FB26 window and next activity (RX time tracking).
571 // This margin is used as follow:
572 // Serving offset restore: 1 qbit (SERV_OFFS_REST_LOAD)
573 // Tpu Sleep: 2 qbit (TPU_SLEEP_LOAD)
574 // ---------
575 // Total: 3 qbit
576
577 l1_config.params.fb26_anchoring_time = (l1_config.params.rx_synth_start_time -
578 #if (CODE_VERSION == SIMULATION)
579 // simulator: end of scenario not included in window (no serialization)
580 1 -
581 #else
582 // RF dependent end of RX TPU scenario
583 l1_config.params.rx_tpu_scenario_ending -
584 #endif
585 EPSILON_SYNC -
586 TPU_SLEEP_LOAD -
587 SERV_OFFS_REST_LOAD -
588 FB26_ACQUIS_DURATION -
589 PROVISION_TIME +
590 TPU_CLOCK_RANGE) % TPU_CLOCK_RANGE;
591
592 l1_config.params.fb26_change_offset_time = l1_config.params.fb26_anchoring_time +
593 PROVISION_TIME -
594 l1_config.params.rx_synth_setup_time -
595 EPSILON_OFFS;
596
597 l1_config.params.guard_bits = rf.tx.guard_bits;
598
599 l1_config.params.prg_tx_gsm = rf.tx.prg_tx;
600 l1_config.params.prg_tx_dcs = rf.tx.prg_tx; //delay for dual band not implemented yet
601
602 l1_config.params.low_agc_noise_thr = rf.rx.agc.low_agc_noise_thr;
603 l1_config.params.high_agc_sat_thr = rf.rx.agc.high_agc_sat_thr;
604 l1_config.params.low_agc = rf.rx.agc.low_agc;
605 l1_config.params.high_agc = rf.rx.agc.high_agc;
606 l1_config.params.il_min = IL_MIN;
607
608 l1_config.params.fixed_txpwr = FIXED_TXPWR;
609 l1_config.params.eeprom_afc = rf.afc.eeprom_afc;
610 l1_config.params.setup_afc_and_rf = SETUP_AFC_AND_RF;
611
612 l1_config.params.psi_sta_inv = rf.afc.psi_sta_inv;
613 l1_config.params.psi_st = rf.afc.psi_st;
614 l1_config.params.psi_st_32 = rf.afc.psi_st_32;
615 l1_config.params.psi_st_inv = rf.afc.psi_st_inv;
616
617 #if (CODE_VERSION == SIMULATION)
618 #if (VCXO_ALGO == 1)
619 l1_config.params.afc_algo = ALGO_AFC_LQG_PREDICTOR; // VCXO|VCTCXO - Choosing AFC algorithm
620 #endif
621 #else
622 #if (VCXO_ALGO == 1)
623 l1_config.params.afc_dac_center = rf.afc.dac_center; // VCXO - assuming DAC linearity
624 l1_config.params.afc_dac_min = rf.afc.dac_min; // VCXO - assuming DAC linearity
625 l1_config.params.afc_dac_max = rf.afc.dac_max; // VCXO - assuming DAC linearity
626 l1_config.params.afc_snr_thr = rf.afc.snr_thr; // VCXO - SNR threshold
627 l1_config.params.afc_algo = ALGO_AFC_LQG_PREDICTOR; // VCXO|VCTCXO - Choosing AFC algorithm
628 l1_config.params.afc_win_avg_size_M = C_WIN_AVG_SIZE_M; // VCXO - Average psi values with this value
629 l1_config.params.rgap_algo = ALGO_AFC_RXGAP; // VCXO - Choosing Reception Gap algorithm
630 l1_config.params.rgap_bad_snr_count_B = C_RGAP_BAD_SNR_COUNT_B; // VCXO - Prediction SNR count
631 #endif
632 #endif
633
634 #if DCO_ALGO
635 #if (RF == 10)
636 // Enable DCO algorithm for direct conversion RFs
637 l1_config.params.dco_enabled = TRUE;
638 #else
639 l1_config.params.dco_enabled = FALSE;
640 #endif
641 #endif
642
643 #if (ANALOG == 1)
644 l1_config.params.debug1 = C_DEBUG1; // Enable f_tx delay of 400000 cyc DEBUG
645 l1_config.params.afcctladd = abb[ABB_AFCCTLADD]; // Value at reset
646 l1_config.params.vbur = abb[ABB_VBUR]; // Uplink gain amp 0dB, Sidetone gain to mute
647 l1_config.params.vbdr = abb[ABB_VBDR]; // Downlink gain amp 0dB, Volume control 0 dB
648 l1_config.params.bbctl = abb[ABB_BBCTL]; // value at reset
649 l1_config.params.apcoff = abb[ABB_APCOFF]; // value at reset
650 l1_config.params.bulioff = abb[ABB_BULIOFF]; // value at reset
651 l1_config.params.bulqoff = abb[ABB_BULQOFF]; // value at reset
652 l1_config.params.dai_onoff = abb[ABB_DAI_ON_OFF]; // value at reset
653 l1_config.params.auxdac = abb[ABB_AUXDAC]; // value at reset
654 l1_config.params.vbcr = abb[ABB_VBCR]; // VULSWITCH=0, VDLAUX=1, VDLEAR=1
655 l1_config.params.apcdel = abb[ABB_APCDEL]; // value at reset
656 #endif
657 #if (ANALOG == 2)
658 l1_config.params.debug1 = C_DEBUG1; // Enable f_tx delay of 400000 cyc DEBUG
659 l1_config.params.afcctladd = abb[ABB_AFCCTLADD]; // Value at reset
660 l1_config.params.vbur = abb[ABB_VBUR]; // Uplink gain amp 0dB, Sidetone gain to mute
661 l1_config.params.vbdr = abb[ABB_VBDR]; // Downlink gain amp 0dB, Volume control 0 dB
662 l1_config.params.bbctl = abb[ABB_BBCTL]; // value at reset
663 l1_config.params.bulgcal = abb[ABB_BULGCAL]; // value at reset
664 l1_config.params.apcoff = abb[ABB_APCOFF]; // value at reset
665 l1_config.params.bulioff = abb[ABB_BULIOFF]; // value at reset
666 l1_config.params.bulqoff = abb[ABB_BULQOFF]; // value at reset
667 l1_config.params.dai_onoff = abb[ABB_DAI_ON_OFF]; // value at reset
668 l1_config.params.auxdac = abb[ABB_AUXDAC]; // value at reset
669 l1_config.params.vbcr = abb[ABB_VBCR]; // VULSWITCH=0, VDLAUX=1, VDLEAR=1
670 l1_config.params.vbcr2 = abb[ABB_VBCR2]; // MICBIASEL=0, VDLHSO=0, MICAUX=0
671 l1_config.params.apcdel = abb[ABB_APCDEL]; // value at reset
672 l1_config.params.apcdel2 = abb[ABB_APCDEL2]; // value at reset
673 #endif
674 #if (ANALOG == 3)
675 l1_config.params.debug1 = C_DEBUG1; // Enable f_tx delay of 400000 cyc DEBUG
676 l1_config.params.afcctladd = abb[ABB_AFCCTLADD]; // Value at reset
677 l1_config.params.vbur = abb[ABB_VBUR]; // Uplink gain amp 0dB, Sidetone gain to mute
678 l1_config.params.vbdr = abb[ABB_VBDR]; // Downlink gain amp 0dB, Volume control 0 dB
679 l1_config.params.bbctl = abb[ABB_BBCTL]; // value at reset
680 l1_config.params.bulgcal = abb[ABB_BULGCAL]; // value at reset
681 l1_config.params.apcoff = abb[ABB_APCOFF]; // X2 Slope 128 and APCSWP disabled
682 l1_config.params.bulioff = abb[ABB_BULIOFF]; // value at reset
683 l1_config.params.bulqoff = abb[ABB_BULQOFF]; // value at reset
684 l1_config.params.dai_onoff = abb[ABB_DAI_ON_OFF]; // value at reset
685 l1_config.params.auxdac = abb[ABB_AUXDAC]; // value at reset
686 l1_config.params.vbcr = abb[ABB_VBCR]; // VULSWITCH=0
687 l1_config.params.vbcr2 = abb[ABB_VBCR2]; // MICBIASEL=0, VDLHSO=0, MICAUX=0
688 l1_config.params.apcdel = abb[ABB_APCDEL]; // value at reset
689 l1_config.params.apcdel2 = abb[ABB_APCDEL2]; // value at reset
690 l1_config.params.vbpop = abb[ABB_VBPOP]; // HSOAUTO enabled
691 l1_config.params.vau_delay_init = abb[ABB_VAUDINITD]; // 2 TDMA Frames between VDL "ON" and VDLHSO "ON"
692 l1_config.params.vaud_cfg = abb[ABB_VAUDCR]; // value at reset
693 l1_config.params.vauo_onoff = abb[ABB_VAUOCR]; // speech on AUX and EAR
694 l1_config.params.vaus_vol = abb[ABB_VAUSCR]; // value at reset
695 l1_config.params.vaud_pll = abb[ABB_VAUDPLL]; // value at reset
696 #endif
697
698 // global variable for access to deep sleep time
699 l1_config.params.sleep_time = 0;
700 }
701
702
703 /************************************/
704 /* Automatic Gain Control */
705 /************************************/
706
707 /*-------------------------------------------------------*/
708 /* Cust_get_agc_from_IL() */
709 /*-------------------------------------------------------*/
710 /* Parameters : */
711 /* Return : */
712 /* Functionality : returns agc value */
713 /*-------------------------------------------------------*/
714 WORD8 Cust_get_agc_from_IL(UWORD16 radio_freq, UWORD16 agc_index, UWORD8 table_id)
715 {
716 // radio_freq currently not used
717 // this parameter is passed in order to allow band dependent tables for specific RFs
718 // (e.g. dual band RF with separate AGC H/W blocks for GSM and DCS)
719
720 if (agc_index > 120)
721 agc_index = 120; // Clip agc_index
722
723 switch (table_id)
724 {
725 case MAX_ID: return(rf.rx.agc.il2agc_max[agc_index]);
726 case AV_ID: return(rf.rx.agc.il2agc_av[agc_index]);
727 case PWR_ID: return(rf.rx.agc.il2agc_pwr[agc_index]);
728 }
729 }
730
731 /*-------------------------------------------------------*/
732 /* Cust_get_agc_band */
733 /*-------------------------------------------------------*/
734 /* Parameters : radio_freq */
735 /* Return : band number */
736 /* Functionality : Computes the band for RF calibration */
737 /*-------------------------------------------------------*/
738 /*---------------------------------------------*/
739
740
741 #if (CODE_VERSION == SIMULATION)
742 UWORD16 Cust_get_agc_band(UWORD16 arfcn, UWORD8 gsm_band)
743 #else
744 UWORD16 inline Cust_get_agc_band(UWORD16 arfcn, UWORD8 gsm_band)
745 #endif
746 {
747 WORD32 i ;
748
749 for (i=0;i<RF_RX_CAL_CHAN_SIZE;i++)
750 {
751 if (arfcn <= rf_band[gsm_band].rx.agc_bands[i].upper_bound)
752 return(i);
753 }
754 // Should never happen!
755 return(0);
756 }
757
758 /*-------------------------------------------------------*/
759 /* Cust_is_band_high */
760 /*-------------------------------------------------------*/
761 /* Parameters : arfcn */
762 /* Return : 0 if low band */
763 /* 1 if high band */
764 /* Functionality : Generic function which return 1 if */
765 /* arfcn is in the high band */
766 /*-------------------------------------------------------*/
767
768 UWORD8 Cust_is_band_high(UWORD16 radio_freq)
769 {
770 UWORD16 max_carrier;
771 UWORD8 std = l1_config.std.id;
772
773 max_carrier = band_config[std_config[std].band[0]].max_carrier;
774
775 return(((radio_freq >= l1_config.std.first_radio_freq) &&
776 (radio_freq < (l1_config.std.first_radio_freq + max_carrier))) ? MULTI_BAND1 : MULTI_BAND2);
777 }
778
779 /*-------------------------------------------------------*/
780 /* l1ctl_encode_delta2() */
781 /*-------------------------------------------------------*/
782 /* Parameters : */
783 /* Return : */
784 /* Functionality : */
785 /*-------------------------------------------------------*/
786 WORD8 l1ctl_encode_delta2(UWORD16 radio_freq)
787 {
788 WORD8 delta2_freq;
789 UWORD16 i;
790 UWORD16 arfcn;
791 UWORD8 band;
792
793 band = Cust_is_band_high(radio_freq);
794 arfcn = Convert_l1_radio_freq(radio_freq);
795
796 i = Cust_get_agc_band(arfcn,band); //
797 delta2_freq = rf_band[band].rx.agc_bands[i].agc_calib;
798
799 //temperature compensation
800 for (i=0;i<RF_RX_CAL_TEMP_SIZE;i++)
801 {
802 if ((WORD16)adc.converted[ADC_RFTEMP] <= rf_band[band].rx.temp[i].temperature)
803 {
804 delta2_freq += rf_band[band].rx.temp[i].agc_calib;
805 break;
806 }
807 }
808
809 return(delta2_freq);
810 }
811
812 /************************************/
813 /* TX Management */
814 /************************************/
815 /*-------------------------------------------------------*/
816 /* Cust_get_ramp_tab */
817 /*-------------------------------------------------------*/
818 /* Parameters : */
819 /* Return : */
820 /* Functionality : */
821 /*-------------------------------------------------------*/
822
823 void Cust_get_ramp_tab(API *a_ramp, UWORD8 txpwr_ramp_up, UWORD8 txpwr_ramp_down, UWORD16 radio_freq)
824 {
825 UWORD16 index_up, index_down,j, arfcn;
826 UWORD8 band;
827
828 band = Cust_is_band_high(radio_freq);
829 arfcn = Convert_l1_radio_freq(radio_freq);
830
831 index_up = rf_band[band].tx.levels[txpwr_ramp_up].ramp_index;
832 index_down = rf_band[band].tx.levels[txpwr_ramp_down].ramp_index;
833
834 #if ((ANALOG == 1) || (ANALOG == 2) || (ANALOG == 3))
835 for (j=0; j<16; j++)
836 {
837 a_ramp[j]=((rf_band[band].tx.ramp_tables[index_down].ramp_down[j])<<11) |
838 ((rf_band[band].tx.ramp_tables[index_up].ramp_up[j]) << 6) |
839 0x14;
840 }
841 #endif
842 }
843
844 /*-------------------------------------------------------*/
845 /* get_pwr_data */
846 /*-------------------------------------------------------*/
847 /* Parameters : */
848 /* Return : */
849 /* Functionality : */
850 /*-------------------------------------------------------*/
851
852 #if ((ANALOG == 1) || (ANALOG == 2) || (ANALOG == 3))
853 UWORD16 Cust_get_pwr_data(UWORD8 txpwr, UWORD16 radio_freq)
854 {
855
856 UWORD16 i,j;
857 UWORD16 arfcn;
858 UWORD8 band;
859
860 #if(ORDER2_TX_TEMP_CAL==1)
861 WORD16 pwr_data;
862 #else
863 UWORD16 pwr_data;
864 #endif
865
866 band = Cust_is_band_high(radio_freq);
867 arfcn = Convert_l1_radio_freq(radio_freq);
868
869 i = rf_band[band].tx.levels[txpwr].chan_cal_index;
870 j=0;
871 // get uncalibrated apc
872 pwr_data = rf_band[band].tx.levels[txpwr].apc;
873
874 while (arfcn > rf_band[band].tx.chan_cal_table[i][j].arfcn_limit)
875 j++;
876
877 // channel calibrate apc
878 pwr_data = ((UWORD32) (pwr_data * rf_band[band].tx.chan_cal_table[i][j].chan_cal))/128;
879
880 // temperature compensate apc
881 {
882 T_TX_TEMP_CAL *pt;
883
884 pt = rf_band[band].tx.temp;
885 while ((WORD16)adc.converted[ADC_RFTEMP] > pt->temperature)
886 pt++;
887 #if(ORDER2_TX_TEMP_CAL==1)
888 pwr_data += (txpwr*(pt->a*txpwr + pt->b) + pt->c) / 64; //delta apc = ax^2+bx+c
889 if(pwr_data < 0) pwr_data = 0;
890 #else
891 pwr_data += pt->apc_calib;
892 #endif
893 }
894 return(pwr_data);
895 }
896 #endif
897 /*-------------------------------------------------------*/
898 /* Cust_Init_Layer1 */
899 /*-------------------------------------------------------*/
900 /* Parameters : */
901 /* Return : */
902 /* Functionality : Load and boot the DSP */
903 /* Initialize shared memory and L1 data structures */
904 /*-------------------------------------------------------*/
905
906 void Cust_Init_Layer1(void)
907 {
908 T_MMI_L1_CONFIG cfg;
909
910 // Get the current band configuration from the flash
911 #if (OP_WCP==1)
912 extern unsigned char ffs_GetBand();
913 cfg.std = ffs_GetBand();
914 #else // NO OP_WCP
915 // cfg.std = std;
916 cfg.std = STD;
917 #endif // OP_WCP
918
919 cfg.tx_pwr_code = 1;
920
921 // sleep management configuration
922 cfg.pwr_mngt = 0;
923 cfg.pwr_mngt_mode_authorized = NO_SLEEP; //Sleep mode
924 cfg.pwr_mngt_clocks = 0x5ff; // list of clocks cut in Big Sleep
925
926
927
928 #if (CODE_VERSION != SIMULATION)
929 cfg.dwnld = DWNLD; //external define from makefile
930 #endif
931
932 l1_initialize(&cfg);
933
934 get_cal_from_nvmem((UWORD8 *)&rf, sizeof(rf), RF_ID);
935 get_cal_from_nvmem((UWORD8 *)&adc_cal, sizeof(adc_cal), ADC_ID);
936
937 }
938
939
940 /*****************************************************************************************/
941 /*************************** TESTMODE functions **********************************/
942 /*****************************************************************************************/
943
944
945
946 /*------------------------------------------------------*/
947 /* madc_hex_2_physical */
948 /*------------------------------------------------------*/
949 /* Parameters : */
950 /* Return : */
951 /* Functionality : Function to convert MAD hexadecimal */
952 /* values into physical values */
953 /*------------------------------------------------------*/
954
955 void madc_hex_2_physical (UWORD16 *adc_hex, T_ADC *adc_phy)
956 {
957 WORD16 i;
958 UWORD16 y;
959 WORD16 Smin = 0, Smax = TEMP_TABLE_SIZE-1;
960 WORD16 index = (TEMP_TABLE_SIZE-1)/2; /* y is the adc code after compensation of ADC slope error introduced by VREF error */
961
962 //store raw ADC values
963 memcpy(&adc.raw[0], adc_hex, sizeof(adc.raw));
964
965 // Convert Vbat [mV] : direct equation with slope and offset compensation
966 for (i = ADC_VBAT; i<ADC_RFTEMP; i++)
967 adc.converted[i] = (((UWORD32)(adc_cal.a[i] * adc.raw[i])) >>10) + adc_cal.b[i];
968
969 /*Convert RF Temperature [Celsius]: binsearch into a table*/
970 y = ((UWORD32)(adc_cal.a[ADC_RFTEMP] * adc.raw[ADC_RFTEMP]))>>8; /* rf.tempcal is the calibration of VREF*/
971 while((Smax-Smin) > 1 )
972 {
973 if(y < temperature[index].adc)
974 Smax=index;
975 else
976 Smin=index;
977
978 index = (Smax+Smin)/2;
979 }
980 adc.converted[ADC_RFTEMP] = temperature[index].temp;
981
982 for (i = ADC_RFTEMP+1; i<ADC_INDEX_END; i++)
983 adc.converted[i] = (((UWORD32)(adc_cal.a[i] * adc.raw[i])) >>10) + adc_cal.b[i];
984
985 //store converted ADC values
986 memcpy(adc_phy, &adc.converted[0], sizeof(adc.raw));
987 }
988
989
990 /*------------------------------------------------------*/
991 /* get_cal_from_nvmem */
992 /*------------------------------------------------------*/
993 /* Parameters : */
994 /* Return : */
995 /* Functionality : Copy calibrated parameter to */
996 /* calibration structure in RAM */
997 /*------------------------------------------------------*/
998
999 void get_cal_from_nvmem (UWORD8 *ptr, UWORD16 len, UWORD8 id)
1000 {
1001
1002 }
1003
1004 /*------------------------------------------------------*/
1005 /* save_cal_from_nvmem */
1006 /*------------------------------------------------------*/
1007 /* Parameters : */
1008 /* Return : */
1009 /* Functionality : Copy calibrated structure from RAM */
1010 /* into NV memory */
1011 /*------------------------------------------------------*/
1012
1013 UWORD8 save_cal_in_nvmem (UWORD8 *ptr, UWORD16 len, UWORD8 id)
1014 {
1015 #if (OP_WCP == 1)
1016 // FFS backup implementation an Avenger 2
1017 // Request MPU-S to backup the FFS
1018 // after full calibration of device
1019 extern void ffs_backup(void);
1020 ffs_backup();
1021 #endif
1022 return (0);
1023 }
1024
1025 #if (TRACE_TYPE == 4)
1026
1027 /*------------------------------------------------------*/
1028 /* l1_cst_l1_parameters */
1029 /*------------------------------------------------------*/
1030 /* Parameters : s: pointer on configuration string */
1031 /* Return : nothing: global var are set */
1032 /* Functionality : Set global L1 vars for dynamic trace */
1033 /* and configuration */
1034 /* */
1035 /* This function is called when a CST message is sent */
1036 /* from the Condat Panel. */
1037 /*------------------------------------------------------*/
1038 void l1_cst_l1_parameters(char *s)
1039 {
1040 /*
1041 a sample command string can be:
1042 L1_PARAMS=<1,2,3,4,5> or
1043 L1_PARAMS=<1,23,3E32,4,5>
1044 with n parameters (here: 5 params); n>=1
1045 parameters are decoded as hexadecimal unsigned integers (UWORD16)
1046 */
1047
1048 UWORD8 uNParams = 0; /* Number of parameters */
1049 UWORD32 aParam[10]; /* Parameters array */
1050 UWORD8 uIndex = 0;
1051
1052 /* *** retrieve all parameters *** */
1053 while (s[uIndex] != '<') uIndex++;
1054 uIndex++;
1055 aParam[0] = 0;
1056
1057 /* uIndex points on 1st parameter */
1058
1059 while (s[uIndex] != '>')
1060 {
1061 if (s[uIndex] == ',')
1062 {
1063 uNParams++;
1064 aParam[uNParams] = 0;
1065 }
1066 else
1067 {
1068 /* uIndex points on a parameter char */
1069 UWORD8 uChar = s[uIndex];
1070 aParam[uNParams] = aParam[uNParams] << 4; /* shift 4 bits left */
1071 if ((uChar>='0') && (uChar<='9'))
1072 aParam[uNParams] += (uChar - '0'); /* retrieve value */
1073 else if ((uChar>='A') && (uChar<='F'))
1074 aParam[uNParams] += (10 + uChar - 'A'); /* retrieve value */
1075 else if ((uChar>='a') && (uChar<='f'))
1076 aParam[uNParams] += (10 + uChar - 'a'); /* retrieve value */
1077 }
1078
1079 uIndex++; /* go to next char */
1080 }
1081
1082 /* increment number of params */
1083 uNParams++;
1084
1085 /* *** handle parameters *** */
1086 /*
1087 1st param: command type
1088 2nd param: argument for command type
1089 */
1090 switch (aParam[0])
1091 {
1092 case 0: /* Trace setting */
1093 /* The 2nd parameter contains the trace bitmap*/
1094 if (uNParams >=2)
1095 trace_info.current_config->l1_dyn_trace = aParam[1];
1096 else
1097 trace_info.current_config->l1_dyn_trace = 0; /* error case: disable all trace */
1098 Trace_dyn_trace_change();
1099 break;
1100 default: /* ignore it */
1101 break;
1102 } // switch
1103 }
1104
1105 #endif
1106
1107 #if ((CHIPSET == 2) || (CHIPSET == 3) || (CHIPSET == 4) || \
1108 (CHIPSET == 5) || (CHIPSET == 6) || (CHIPSET == 7) || \
1109 (CHIPSET == 8) || (CHIPSET == 9) || (CHIPSET == 10) || \
1110 (CHIPSET == 11) || (CHIPSET == 12))
1111 /*-------------------------------------------------------*/
1112 /* power_down_config() : temporary implementation !!! */
1113 /*-------------------------------------------------------*/
1114 /* Parameters : sleep_mode (NO, SMALL, BIG, DEEP or ALL) */
1115 /* clocks to be cut in BIG sleep */
1116 /* Return : */
1117 /* Functionality : set the l1s variables */
1118 /* l1s.pw_mgr.mode_authorized and l1s.pw_mgr.clocks */
1119 /* according to the desired mode. */
1120 /*-------------------------------------------------------*/
1121 void power_down_config(UWORD8 sleep_mode, UWORD16 clocks)
1122 {
1123 #if (OP_L1_STANDALONE == 1)
1124 if(sleep_mode != NO_SLEEP)
1125 #endif
1126 {
1127 l1_config.pwr_mngt = PWR_MNGT;
1128 l1s.pw_mgr.mode_authorized = sleep_mode;
1129 l1s.pw_mgr.clocks = clocks;
1130 }
1131
1132 #if (OP_L1_STANDALONE == 0)
1133 l1s.pw_mgr.enough_gaug = FALSE;
1134 #endif
1135 }
1136 #endif
1137
1138 /* glowing,2004-06-16, import from M188 */
1139 void layer1_em_get_rxlevqual(WORD32 *l1_rxlev_scell,WORD32 *l1_rxlev_dedic_sub,
1140 WORD32 *l1_rxqual_dedic,WORD32 *l1_rxqual_dedic_sub)
1141 {
1142 /*
1143 xmzhou_trace_string_value("values***********",(UINT32)(l1a_l1s_com.Scell_info.meas.acc));
1144 xmzhou_trace_string_value("values***********",(UINT32)(l1a_l1s_com.Scell_info.meas.nbr_meas));
1145 xmzhou_trace_string_value("values***********",(UINT32)(l1a_l1s_com.Smeas_dedic.acc_sub));
1146 xmzhou_trace_string_value("values***********",(UINT32)(l1a_l1s_com.Smeas_dedic.nbr_meas_sub));
1147 xmzhou_trace_string_value("values***********",(UINT32)(l1a_l1s_com.Smeas_dedic.qual_acc_full));
1148 xmzhou_trace_string_value("values***********",(UINT32)(l1a_l1s_com.Smeas_dedic.qual_nbr_meas_full));
1149 xmzhou_trace_string_value("values***********",(UINT32)(l1a_l1s_com.Smeas_dedic.qual_acc_sub));
1150 xmzhou_trace_string_value("values***********",(UINT32)(l1a_l1s_com.Smeas_dedic.qual_nbr_meas_sub));
1151 */
1152 if(l1a_l1s_com.Scell_info.meas.nbr_meas != 0){
1153 *l1_rxlev_scell=(WORD32)(l1a_l1s_com.Scell_info.meas.acc)/(WORD32)(l1a_l1s_com.Scell_info.meas.nbr_meas);
1154 }else{
1155 *l1_rxlev_scell=(WORD32)(l1a_l1s_com.Scell_info.meas.acc)/(WORD32)(4);
1156 }
1157 // xmzhou_trace_string_value("l1_rxlev_scell",(UINT32)(*l1_rxlev_scell));
1158
1159 if(l1a_l1s_com.Smeas_dedic.nbr_meas_sub !=0){
1160 *l1_rxlev_dedic_sub=(WORD32)(l1a_l1s_com.Smeas_dedic.acc_sub)/(WORD32)(l1a_l1s_com.Smeas_dedic.nbr_meas_sub);
1161 }else{
1162 *l1_rxlev_dedic_sub=0;
1163 }
1164 // xmzhou_trace_string_value("l1_rxlev_dedic_sub",(UINT32)(*l1_rxlev_dedic_sub));
1165
1166 if(l1a_l1s_com.Smeas_dedic.qual_nbr_meas_full !=0){
1167 *l1_rxqual_dedic=(WORD32)(l1a_l1s_com.Smeas_dedic.qual_acc_full)/(WORD32)(l1a_l1s_com.Smeas_dedic.qual_nbr_meas_full);
1168 }else{
1169 *l1_rxqual_dedic=0;
1170 }
1171 // xmzhou_trace_string_value("l1_rxqual_dedic",(UINT32)(*l1_rxqual_dedic));
1172
1173 if(l1a_l1s_com.Smeas_dedic.qual_nbr_meas_sub){
1174 *l1_rxqual_dedic_sub=(WORD32)(l1a_l1s_com.Smeas_dedic.qual_acc_sub)/(WORD32)(l1a_l1s_com.Smeas_dedic.qual_nbr_meas_sub);
1175 }else{
1176 *l1_rxqual_dedic_sub=0;
1177 }
1178 // xmzhou_trace_string_value("l1_rxqual_dedic_sub",(UINT32)(*l1_rxqual_dedic_sub));
1179 }
1180
1181 void layer1_em_get_mode(WORD32 *l1_mode)
1182 {
1183 *l1_mode=l1a_l1s_com.mode;
1184 }
1185
1186 /*glowing,2004-06-16, end of import */
1187